926 resultados para Business Value Two-Layer Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An antagonistic differential game of hyperbolic type with a separable linear vector pay-off function is considered. The main result is the description of all ε-Slater saddle points consisting of program strategies, program ε-Slater maximins and minimaxes for each ε ∈ R^N > for this game. To this purpose, the considered differential game is reduced to find the optimal program strategies of two multicriterial problems of hyperbolic type. The application of approximation enables us to relate these problems to a problem of optimal program control, described by a system of ordinary differential equations, with a scalar pay-off function. It is found that the result of this problem is not changed, if the players use positional or program strategies. For the considered differential game, it is interesting that the ε-Slater saddle points are not equivalent and there exist two ε-Slater saddle points for which the values of all components of the vector pay-off function at one of them are greater than the respective components of the other ε-saddle point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contemporary business environment involves IT being invested and shared by multiple stakeholders in collaborative, platform-based, and relational arrangements where the objective is to co-create value. Traditional IT enabled business value therefore has been extended towards IT value co-creation that involves multiple stakeholders. In this paper, we present a conceptual development of IT-based value co-creation in the context of online crowdsourcing. Based on the existing literature, we have distinguished multiple crowdsourcing types (models) by analyzing attributes of crowd, the roles of the client, the platform and the crowd that act as key stakeholders in the value co-creation process, and describe the major interactions between the main stakeholders. Our conceptual development is suggesting different combinations of value co-creation layers to be evident in different crowdsourcing models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology for formally modeling and analyzing software architecture of mobile agent systems provides a solid basis to develop high quality mobile agent systems, and the methodology is helpful to study other distributed and concurrent systems as well. However, it is a challenge to provide the methodology because of the agent mobility in mobile agent systems.^ The methodology was defined from two essential parts of software architecture: a formalism to define the architectural models and an analysis method to formally verify system properties. The formalism is two-layer Predicate/Transition (PrT) nets extended with dynamic channels, and the analysis method is a hierarchical approach to verify models on different levels. The two-layer modeling formalism smoothly transforms physical models of mobile agent systems into their architectural models. Dynamic channels facilitate the synchronous communication between nets, and they naturally capture the dynamic architecture configuration and agent mobility of mobile agent systems. Component properties are verified based on transformed individual components, system properties are checked in a simplified system model, and interaction properties are analyzed on models composing from involved nets. Based on the formalism and the analysis method, this researcher formally modeled and analyzed a software architecture of mobile agent systems, and designed an architectural model of a medical information processing system based on mobile agents. The model checking tool SPIN was used to verify system properties such as reachability, concurrency and safety of the medical information processing system. ^ From successful modeling and analyzing the software architecture of mobile agent systems, the conclusion is that PrT nets extended with channels are a powerful tool to model mobile agent systems, and the hierarchical analysis method provides a rigorous foundation for the modeling tool. The hierarchical analysis method not only reduces the complexity of the analysis, but also expands the application scope of model checking techniques. The results of formally modeling and analyzing the software architecture of the medical information processing system show that model checking is an effective and an efficient way to verify software architecture. Moreover, this system shows a high level of flexibility, efficiency and low cost of mobile agent technologies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unified Modeling Language (UML) is the most comprehensive and widely accepted object-oriented modeling language due to its multi-paradigm modeling capabilities and easy to use graphical notations, with strong international organizational support and industrial production quality tool support. However, there is a lack of precise definition of the semantics of individual UML notations as well as the relationships among multiple UML models, which often introduces incomplete and inconsistent problems for software designs in UML, especially for complex systems. Furthermore, there is a lack of methodologies to ensure a correct implementation from a given UML design. The purpose of this investigation is to verify and validate software designs in UML, and to provide dependability assurance for the realization of a UML design.^ In my research, an approach is proposed to transform UML diagrams into a semantic domain, which is a formal component-based framework. The framework I proposed consists of components and interactions through message passing, which are modeled by two-layer algebraic high-level nets and transformation rules respectively. In the transformation approach, class diagrams, state machine diagrams and activity diagrams are transformed into component models, and transformation rules are extracted from interaction diagrams. By applying transformation rules to component models, a (sub)system model of one or more scenarios can be constructed. Various techniques such as model checking, Petri net analysis techniques can be adopted to check if UML designs are complete or consistent. A new component called property parser was developed and merged into the tool SAM Parser, which realize (sub)system models automatically. The property parser generates and weaves runtime monitoring code into system implementations automatically for dependability assurance. The framework in the investigation is creative and flexible since it not only can be explored to verify and validate UML designs, but also provides an approach to build models for various scenarios. As a result of my research, several kinds of previous ignored behavioral inconsistencies can be detected.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household's evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household's optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household’s evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household’s optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the creation of supersonic vehicles, during the Second World War, the engineers have given special attention to the interaction between the aerodynamic efforts and the structures of the aircrafts due to a highly destructive phenomenon called flutter in aeronautical panel. Flutter in aeronautical panels is a self-excited aeroelastic phenomenon, which can occurs during supersonic flights due to dynamic instability of inertia, elastic and aerodynamic forces of the system. In the flutter condition, when the critical aerodynamic pressure is reached, the vibration amplitudes of the panel become dynamically unstable and increase exponentially with time, affecting significantly the fatigue life of the existing aeronautical components. Thus, in this paper, the interest is to investigate the possibility of reducing the effects of the supersonic aeroelastic instability of rectangular plates by applying passive constrained viscoelastic layers. The rationale for such study is the fact that as the addition of viscoelastic materials provides decreased vibration amplitudes it becomes important to quantify the suppression of plate flutter coalescence modes that can be obtained. Moreover, despite the fact that much research on the suppression of panel flutter has been carried out by using passive, semi-active and active control techniques, very few of them are adapted to deal with the problem of estimating the flutter speeds of viscoelastic systems, since they must conveniently account for the frequency- and temperature-dependent behavior of the viscoelastic material. In this context, two different model of viscoelastic material are developed and applied to the model of sandwich plate by using finite elements. After the presentation of the theoretical foundations of the methodology, the description of a numerical study on the flutter analysis of a three-layer sandwich plate is addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract

The goal of modern radiotherapy is to precisely deliver a prescribed radiation dose to delineated target volumes that contain a significant amount of tumor cells while sparing the surrounding healthy tissues/organs. Precise delineation of treatment and avoidance volumes is the key for the precision radiation therapy. In recent years, considerable clinical and research efforts have been devoted to integrate MRI into radiotherapy workflow motivated by the superior soft tissue contrast and functional imaging possibility. Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive technique that measures properties of tissue microvasculature. Its sensitivity to radiation-induced vascular pharmacokinetic (PK) changes has been preliminary demonstrated. In spite of its great potential, two major challenges have limited DCE-MRI’s clinical application in radiotherapy assessment: the technical limitations of accurate DCE-MRI imaging implementation and the need of novel DCE-MRI data analysis methods for richer functional heterogeneity information.

This study aims at improving current DCE-MRI techniques and developing new DCE-MRI analysis methods for particular radiotherapy assessment. Thus, the study is naturally divided into two parts. The first part focuses on DCE-MRI temporal resolution as one of the key DCE-MRI technical factors, and some improvements regarding DCE-MRI temporal resolution are proposed; the second part explores the potential value of image heterogeneity analysis and multiple PK model combination for therapeutic response assessment, and several novel DCE-MRI data analysis methods are developed.

I. Improvement of DCE-MRI temporal resolution. First, the feasibility of improving DCE-MRI temporal resolution via image undersampling was studied. Specifically, a novel MR image iterative reconstruction algorithm was studied for DCE-MRI reconstruction. This algorithm was built on the recently developed compress sensing (CS) theory. By utilizing a limited k-space acquisition with shorter imaging time, images can be reconstructed in an iterative fashion under the regularization of a newly proposed total generalized variation (TGV) penalty term. In the retrospective study of brain radiosurgery patient DCE-MRI scans under IRB-approval, the clinically obtained image data was selected as reference data, and the simulated accelerated k-space acquisition was generated via undersampling the reference image full k-space with designed sampling grids. Two undersampling strategies were proposed: 1) a radial multi-ray grid with a special angular distribution was adopted to sample each slice of the full k-space; 2) a Cartesian random sampling grid series with spatiotemporal constraints from adjacent frames was adopted to sample the dynamic k-space series at a slice location. Two sets of PK parameters’ maps were generated from the undersampled data and from the fully-sampled data, respectively. Multiple quantitative measurements and statistical studies were performed to evaluate the accuracy of PK maps generated from the undersampled data in reference to the PK maps generated from the fully-sampled data. Results showed that at a simulated acceleration factor of four, PK maps could be faithfully calculated from the DCE images that were reconstructed using undersampled data, and no statistically significant differences were found between the regional PK mean values from undersampled and fully-sampled data sets. DCE-MRI acceleration using the investigated image reconstruction method has been suggested as feasible and promising.

Second, for high temporal resolution DCE-MRI, a new PK model fitting method was developed to solve PK parameters for better calculation accuracy and efficiency. This method is based on a derivative-based deformation of the commonly used Tofts PK model, which is presented as an integrative expression. This method also includes an advanced Kolmogorov-Zurbenko (KZ) filter to remove the potential noise effect in data and solve the PK parameter as a linear problem in matrix format. In the computer simulation study, PK parameters representing typical intracranial values were selected as references to simulated DCE-MRI data for different temporal resolution and different data noise level. Results showed that at both high temporal resolutions (<1s) and clinically feasible temporal resolution (~5s), this new method was able to calculate PK parameters more accurate than the current calculation methods at clinically relevant noise levels; at high temporal resolutions, the calculation efficiency of this new method was superior to current methods in an order of 102. In a retrospective of clinical brain DCE-MRI scans, the PK maps derived from the proposed method were comparable with the results from current methods. Based on these results, it can be concluded that this new method can be used for accurate and efficient PK model fitting for high temporal resolution DCE-MRI.

II. Development of DCE-MRI analysis methods for therapeutic response assessment. This part aims at methodology developments in two approaches. The first one is to develop model-free analysis method for DCE-MRI functional heterogeneity evaluation. This approach is inspired by the rationale that radiotherapy-induced functional change could be heterogeneous across the treatment area. The first effort was spent on a translational investigation of classic fractal dimension theory for DCE-MRI therapeutic response assessment. In a small-animal anti-angiogenesis drug therapy experiment, the randomly assigned treatment/control groups received multiple fraction treatments with one pre-treatment and multiple post-treatment high spatiotemporal DCE-MRI scans. In the post-treatment scan two weeks after the start, the investigated Rényi dimensions of the classic PK rate constant map demonstrated significant differences between the treatment and the control groups; when Rényi dimensions were adopted for treatment/control group classification, the achieved accuracy was higher than the accuracy from using conventional PK parameter statistics. Following this pilot work, two novel texture analysis methods were proposed. First, a new technique called Gray Level Local Power Matrix (GLLPM) was developed. It intends to solve the lack of temporal information and poor calculation efficiency of the commonly used Gray Level Co-Occurrence Matrix (GLCOM) techniques. In the same small animal experiment, the dynamic curves of Haralick texture features derived from the GLLPM had an overall better performance than the corresponding curves derived from current GLCOM techniques in treatment/control separation and classification. The second developed method is dynamic Fractal Signature Dissimilarity (FSD) analysis. Inspired by the classic fractal dimension theory, this method measures the dynamics of tumor heterogeneity during the contrast agent uptake in a quantitative fashion on DCE images. In the small animal experiment mentioned before, the selected parameters from dynamic FSD analysis showed significant differences between treatment/control groups as early as after 1 treatment fraction; in contrast, metrics from conventional PK analysis showed significant differences only after 3 treatment fractions. When using dynamic FSD parameters, the treatment/control group classification after 1st treatment fraction was improved than using conventional PK statistics. These results suggest the promising application of this novel method for capturing early therapeutic response.

The second approach of developing novel DCE-MRI methods is to combine PK information from multiple PK models. Currently, the classic Tofts model or its alternative version has been widely adopted for DCE-MRI analysis as a gold-standard approach for therapeutic response assessment. Previously, a shutter-speed (SS) model was proposed to incorporate transcytolemmal water exchange effect into contrast agent concentration quantification. In spite of richer biological assumption, its application in therapeutic response assessment is limited. It might be intriguing to combine the information from the SS model and from the classic Tofts model to explore potential new biological information for treatment assessment. The feasibility of this idea was investigated in the same small animal experiment. The SS model was compared against the Tofts model for therapeutic response assessment using PK parameter regional mean value comparison. Based on the modeled transcytolemmal water exchange rate, a biological subvolume was proposed and was automatically identified using histogram analysis. Within the biological subvolume, the PK rate constant derived from the SS model were proved to be superior to the one from Tofts model in treatment/control separation and classification. Furthermore, novel biomarkers were designed to integrate PK rate constants from these two models. When being evaluated in the biological subvolume, this biomarker was able to reflect significant treatment/control difference in both post-treatment evaluation. These results confirm the potential value of SS model as well as its combination with Tofts model for therapeutic response assessment.

In summary, this study addressed two problems of DCE-MRI application in radiotherapy assessment. In the first part, a method of accelerating DCE-MRI acquisition for better temporal resolution was investigated, and a novel PK model fitting algorithm was proposed for high temporal resolution DCE-MRI. In the second part, two model-free texture analysis methods and a multiple-model analysis method were developed for DCE-MRI therapeutic response assessment. The presented works could benefit the future DCE-MRI routine clinical application in radiotherapy assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various sources have sought to consider the educational interventions that foster changes in perception of and attitudes toward nature, with the ultimate intent of understanding how education can be used to encourage environmentally responsible behaviours. With these in mind, the current study identified an outdoor environmental education program incorporating these empirically supported interventions, and assessed its ability to influence environmental knowledge, attitudes, and behaviours. Specifically, this study considered the following research questions: 1) To what degree can participation in this outdoor education program foster environmental knowledge and encourage pro-environmental attitudes and self-reported pro-environmental behaviours? 2) How is this effect different among students of different genders, and those who have different prior experiences in nature? Two motivational frameworks guided inquiry in the current study: the Value-Belief-Norm Model of Environmentalism (VBN) and the Theory of Planned Behaviour (TPB). The study employed a quantitative survey methodology, combining contemporary data measuring knowledge, attitudes, and behaviours with archived data collected by program staff, reflecting frequency of environmentally responsible behaviour. Further, a single qualitative item was included for which students provided “the first three words that [came] to mind when [they] think of the word nature.” Terms provided before and after the program were compared for differences in theme to detect subtle or underlying changes. Quantitative results indicated no significant change in student knowledge or attitudes through the outdoor environmental education program. However, a significant change in self-reported behaviour was identified from both the contemporary and archived data. This agreement in positive findings across the two data sets, collected using different measures and different participants, lends evidence of the program’s ability to encourage self-reported pro-environmental behaviour. Further, qualitative results showed some change in students’ perceptions of nature through the program, providing direction for future research. These findings suggest that this particular outdoor education program was successful in encouraging students’ self-reported environmentally responsible behaviour. This change was achieved without significant change in knowledge or environmental attitudes, suggesting that external factors not measured in this study might have played a role in affecting behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se presentan los resultados de la aplicación de una metodología integradora de auditoría de información y conocimiento, llevada a cabo en un Centro de Investigación del Ministerio de Ciencia, Tecnología y Medio Ambiente de la provincia de Holguín, Cuba, conformada por siete etapas con un enfoque híbrido dirigida a revisar la estrategia y la política de gestión de información y conocimiento, identificar e inventariar y mapear los recursos de I+C y sus flujos, y valorar los procesos asociados a su gestión. La alta dirección de este centro, sus especialistas e investigadores manifestaron la efectividad de la metodología aplicada cuyos resultados propiciaron reajustar la proyección estratégica en relación con la gestión de la I+C, rediseñar los flujos informativos de los procesos claves, disponer de un directorio de sus expertos por áreas y planificar el futuro aprendizaje y desarrollo profesional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are in an era of unprecedented data volumes generated from observations and model simulations. This is particularly true from satellite Earth Observations (EO) and global scale oceanographic models. This presents us with an opportunity to evaluate large scale oceanographic model outputs using EO data. Previous work on model skill evaluation has led to a plethora of metrics. The paper defines two new model skill evaluation metrics. The metrics are based on the theory of universal multifractals and their purpose is to measure the structural similarity between the model predictions and the EO data. The two metrics have the following advantages over the standard techniques: a) they are scale-free, b) they carry important part of information about how model represents different oceanographic drivers. Those two metrics are then used in the paper to evaluate the performance of the FVCOM model in the shelf seas around the south-west coast of the UK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We are in an era of unprecedented data volumes generated from observations and model simulations. This is particularly true from satellite Earth Observations (EO) and global scale oceanographic models. This presents us with an opportunity to evaluate large scale oceanographic model outputs using EO data. Previous work on model skill evaluation has led to a plethora of metrics. The paper defines two new model skill evaluation metrics. The metrics are based on the theory of universal multifractals and their purpose is to measure the structural similarity between the model predictions and the EO data. The two metrics have the following advantages over the standard techniques: a) they are scale-free, b) they carry important part of information about how model represents different oceanographic drivers. Those two metrics are then used in the paper to evaluate the performance of the FVCOM model in the shelf seas around the south-west coast of the UK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Costs related to inventory are usually a significant amount of the company’s total assets. Despite this, companies in general don’t pay a lot of interest in it, even if the benefits from effective inventory are obvious when it comes to less tied up capital, increased customer satisfaction and better working environment. Permobil AB, Timrå is in an intense period when it comes to revenue and growth. The production unit is aiming for an increased output of 30 % in the next two years. To make this possible the company has to improve their way to distribute and handle material,The purpose of the study is to provide useful information and concrete proposals for action, so that the company can build a strategy for an effective and sustainable solution when it comes to inventory management. Alternative methods for making forecasts are suggested, in order to reach a more nuanced perception of different articles, and how they should be managed. Analytic Hierarchy Process (AHP) was used in order to give specially selected persons the chance to decide criteria for how the article should be valued. The criteria they agreed about were annual volume value, lead time, frequency rate and purchase price. The other method that was proposed was a two-dimensional model where annual volume value and frequency was the criteria that specified in which class an article should be placed. Both methods resulted in significant changes in comparison to the current solution. For the spare part inventory different forecast methods were tested and compared with the current solution. It turned out that the current forecast method performed worse than both moving average and exponential smoothing with trend. The small sample of ten random articles is not big enough to reject the current solution, but still the result is a reason enough, for the company to control the quality of the forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this paper is the implementation of a spiking neural network to achieve sound localization; the model is based on the influential short paper by Jeffress in 1948. The SNN has a two-layer topology which can accommodate a limited number of angles in the azimuthal plane. The model accommodates multiple inter-neuron connections with associated delays, and a supervised STDP algorithm is applied to select the optimal pathway for sound localization. Also an analysis of previous relevant work in the area of auditory modelling supports this research.