986 resultados para Brain areas


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most cognitive functions require the encoding and routing of information across distributed networks of brain regions. Information propagation is typically attributed to physical connections existing between brain regions, and contributes to the formation of spatially correlated activity patterns, known as functional connectivity. While structural connectivity provides the anatomical foundation for neural interactions, the exact manner in which it shapes functional connectivity is complex and not yet fully understood. Additionally, traditional measures of directed functional connectivity only capture the overall correlation between neural activity, and provide no insight on the content of transmitted information, limiting their ability in understanding neural computations underlying the distributed processing of behaviorally-relevant variables. In this work, we first study the relationship between structural and functional connectivity in simulated recurrent spiking neural networks with spike timing dependent plasticity. We use established measures of time-lagged correlation and overall information propagation to infer the temporal evolution of synaptic weights, showing that measures of dynamic functional connectivity can be used to reliably reconstruct the evolution of structural properties of the network. Then, we extend current methods of directed causal communication between brain areas, by deriving an information-theoretic measure of Feature-specific Information Transfer (FIT) quantifying the amount, content and direction of information flow. We test FIT on simulated data, showing its key properties and advantages over traditional measures of overall propagated information. We show applications of FIT to several neural datasets obtained with different recording methods (magneto and electro-encephalography, spiking activity, local field potentials) during various cognitive functions, ranging from sensory perception to decision making and motor learning. Overall, these analyses demonstrate the ability of FIT to advance the investigation of communication between brain regions, uncovering the previously unaddressed content of directed information flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Systemic injection of kainic acid (KA) results in characteristic behaviors and programmed cell death in some regions of the rat brain. We used KA followed by recovery at 4 degrees C to restrict damage to limbic structures and compared patterns of immediate early gene (IEG) expression and associated DNA binding activity in these damaged areas with that in spared brain regions. Male Wistar rats were injected with BA (12 mg/kg, ip) and kept at 4 degrees C for 5 h. This treatment reduced the severity of behaviors and restricted damage (observed by Nissl staining) to the CA1 and CA3 regions of the hippocampus and an area including the entorhinal cortex. DNA laddering, characteristic of apoptosis, was first evident in the hippocampus and the entorhinal cortex 18 and 22 h after RA, respectively. The pattern of IEG mRNA induction fell into three classes: IEGs that were induced in both damaged and spared areas (c-fos, fos B, jun B, and egr-1), IEGs that were induced specifically in the damaged areas (fra-2 and c-jun), and an IEG that was significantly induced by saline injection and/or the cold treatment (jun D). The pattern of immunoreactivity closely followed that of mRNA expression. Binding to the AP-1 and EGR DNA consensus sequences increased in all three regions studied. This study describes a unique modification of the animal model of ICA-induced neurotoxicity which may prove a useful tool for dissecting the molecular cascade that ultimately results in programmed cell death. (C) 1997 Academic Press.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The plastic brain responses generated by the training with acrobatic exercise (AE) and with treadmill exercise (TE) may be different. We evaluated the protein expression of synapsin I (SYS), synaptophysin (SYP), microtubule-associated protein 2 (MAP2) and neurofilaments (NF) by immunohistochemistry and Western blotting in the motor cortex, striatum and cerebellum of rats subjected to TE and AE. Young adult male Wistar rats were divided into 3 groups: sedentary (Sed) (n=15), TE (n=20) and AE (n=20). The rats were trained 3 days/week for 4 weeks on a treadmill at 0.6 km/h, 40 min/day (TE), or moved through a circuit of obstacles 5 times/day (AE). The rats from the TE group exhibited a significant increase of SYS and SYP in the motor cortex, of NF68, SYS and SYP in the striatum, and of MAP2, NF and SYS in the cerebellum, whereas NF was decreased in the motor cortex and the molecular layer of the cerebellar cortex. On the other hand, the rats from the AE group showed a significant increase of MAP2 and SYP in the motor cortex, of all four proteins in the striatum, and of SYS in the cerebellum. In conclusion, AE induced changes in the expression of synaptic and structural proteins mainly in the motor cortex and striatum, which may underlie part of the learning of complex motor tasks. TE, on the other hand, promoted more robust changes of structural proteins in all three regions, especially in the cerebellum, which is involved in learned and automatic tasks. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has become a routine clinical procedure for localization of language and motor brain regions and has been replacing more invasive preoperative procedures. However, the fMRI results from these tasks are not always reproducible even from the same patient. Evaluating the reproducibility of language and speech mapping is especially complicated due to the complex brain circuitry that may become activated during the functional task. Non-language areas such as sensory, attention, decision-making, and motor brain regions may also be activated in addition to the specific language regions during a traditional sentence-completion task. In this study, I test a new approach, which utilizes 4-minute video-based tasks, to map language and speech brain regions for patients undergoing brain surgery. Results from 35 subjects have shown that the video-based task activates Wernicke’s area, as well as Broca’s area in most subjects. The computed laterality indices, which indicate the dominant hemisphere from that functional task, have indicated left dominance from the video-based tasks. This study has shown that the video-based task may be an alternative method for localization of language and speech brain regions for patients who are unable to complete the sentence-completion task.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estrogens can be labeled with the positron-emitting radionuclide fluorine-18 (t$\sb{1/2}$ = 110 min) by fluoride ion (n-Bu$\sb4$N$\sp{18}$F) displacement of a 16$\beta$-trifluoromethanesulfonate (triflate) derivative of the corresponding estrone 3-triflate, and purification by HPLC. That sequence has been used to synthesize the 11$\beta$-methoxy 1 and 11$\beta$-ethyl 2 analogues of the breast tumor imaging agent, 16$\alpha$-($\sp{18}$F) fluoro-17$\beta$-estradiol (FES). Tissue distribution studies of 1 and 2 in immature female rats show high selectivity for target tissue (T, uterus) vs non-target (NT, muscle and lung), with T/NT ratios being 43 and 17 at one hour after injection for 1 and 2, respectively. The parent estrogen FES has previously been shown to display an intermediate value for tissue selectivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ventral premotor cortex (PMv) is believed to play a pivotal role in a multitude of visuomotor behaviors, such as sensory-guided goal-directed visuomotor transformations, arbitrary visuomotor mapping, and hyper-learnt visuomotor associations underlying automatic imitative tendencies. All these functions are likely carried out through the copious projections connecting PMv to the primary motor cortex (M1). Yet, causal evidence investigating the functional relevance of the PMv-M1 network remains elusive and scarce. In the studies reported in this thesis we addressed this issue using a transcranial magnetic stimulation (TMS) protocol called cortico-cortical paired associative stimulation (ccPAS), which relies on multisite stimulation to induce Hebbian spike-timing dependent plasticity (STDP) by repeatedly stimulating the pathway connecting two target areas to manipulate their connectivity. Firstly, we show that ccPAS protocols informed by both short- and long-latency PMv-M1 interactions effectively modulate connectivity between the two nodes. Then, by pre-activating the network to apply ccPAS in a state-dependent manner, we were able to selectively target specific functional visuo-motor pathways, demonstrating the relevance of PMv-M1 connectivity to arbitrary visuomotor mapping. Subsequently, we addressed the PMv-to-M1 role in automatic imitation, and demonstrated that its connectivity manipulation has a corresponding impact on automatic imitative tendencies. Finally, by combining dual-coil TMS connectivity assessments and ccPAS in young and elderly individuals, we traced effective connectivity of premotor-motor networks and tested their plasticity and relevance to manual dexterity and force in healthy ageing. Our findings provide unprecedent causal evidence of the functional role of the PMv-to-M1 network in young and elderly individuals. The studies presented in this thesis suggest that ccPAS can effectively modulate the strength of connectivity between targeted areas, and coherently manipulate a networks’ behavioral output. Results open new research prospects into the causal role of cortico-cortical connectivity, and provide necessary information to the development of clinical interventions based on connectivity manipulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The successful integration of stem cells in adult brain has become a central issue in modern neuroscience. In this study we sought to test the hypothesis that survival and neurodifferentiation of mesenchymal stem cells (MSCs) may be dependent upon microenvironmental conditions according to the site of implant in the brain. Methods: MSCs were isolated from adult rats and labeled with enhanced-green fluorescent protein (eGFP) lentivirus. A cell suspension was implanted stereotactically into the brain of 50 young rats, into one neurogenic area (hippocampus), and into another nonneurogenic area (striatum). Animals were sacrificed 6 or 12 weeks after surgery, and brains were stained for mature neuronal markers. Cells coexpressing NeuN (neuronal specific nuclear protein) and GFP (green fluorescent protein) were counted stereologically at both targets. Results: The isolated cell population was able to generate neurons positive for microtubule-associated protein 2 (MAP2), neuronal-specific nuclear protein (NeuN), and neurofilament 200 (NF200) in vitro. Electrophysiology confirmed expression of voltage-gated ionic channels. Once implanted into the hippocampus, cells survived for up to 12 weeks, migrated away from the graft, and gave rise to mature neurons able to synthesize neurotransmitters. By contrast, massive cell degeneration was seen in the striatum, with no significant migration. Induction of neuronal differentiation with increased cyclic adenosine monophosphate in the culture medium before implantation favored differentiation in vivo. Conclusions: Our data demonstrated that survival and differentiation of MSCs is strongly dependent upon a permissive microenvironment. Identification of the pro-neurogenic factors present in the hippocampus could subsequently allow for the integration of stem cells into nonpermissive areas of the central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A longitudinal study of 55 adults with severe traumatic brain injury (TBI) investigated the areas of function for which they lacked self-awareness of their level of competency. Data were collected at 3 and 12 months post-injury using the Patient Competency Rating Scale. Self-awareness was measured by comparing patient self-ratings with the ratings of an infor mant. The results were consistent with previous studies, indicating that self-awareness was most impaired for activities with a large cognitive and socioemotional component, and least impaired for basic activities of daily living, memory activities, and overt emotional responses. For most areas of function that were overestimated at 3 months post-injury, self-awareness subsequently improved during the first year after injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamic`s homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a ""boost"" to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluated at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels., compared with 3D-CRT. Intensity-modulated radiotherapy provided of 20, 30, and 40 Gy, respectively statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment. (C) 2010 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent findings showing significant correlations between phospholipase A2 (PLA2) activity and structural changes in schizophrenic brains contribute to the membrane hypothesis of schizophrenia, which was hampered because a clean functional link between elevated PLA2 activity and brain structure was missing (Neuroimage, 2010; 52: 1314-1327). We measured membrane fluidity parameters and found that brain membranes isolated from the prefrontal cortex of schizophrenic patients showed significantly increased flexibility of fatty acid chains. Our findings support a possible link between elevated PLA2 activity in cortical areas of schizophrenic patients and subsequent alterations of the biophysical parameters of neuronal membranes leading to structural changes in these areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: There are 2 main hypotheses concerning the cause of mirror movements (MM) in Kallmann syndrome (KS): abnormal development of the primary motor system, involving the ipsilateral corticospinal tract, and lack of contralateral motor cortex inhibitory mechanisms, mainly through the corpus callosum. The purpose of our study was to determine white and gray matter volume changes in a KS population by using optimized voxel-based morphometry (VBM) and to investigate the relationship between the abnormalities and the presence of MM, addressing the 2 mentioned hypotheses. MATERIALS AND METHODS: T1-weighted volumetric images from 21 patients with KS and 16 matched control subjects were analyzed with optimized VBM. Images were segmented and spatially normalized, and these deformation parameters were then applied to the original images before the second segmentation. Patients were divided into groups with and without MM, and a t test statistic was then applied on a voxel-by-voxel basis between the groups and controls to evaluate significant differences. RESULTS: When considering our hypothesis a priori, we found that 2 areas of increased gray matter volume, in the left primary motor and sensorimotor cortex, were demonstrated only in patients with MM, when compared with healthy controls. Regarding white matter alterations, no areas of altered volume involving the corpus callosum or the projection of the corticospinal tract were demonstrated. CONCLUSION: The VBM study did not show significant white matter changes in patients with KS but showed gray matter alterations in keeping with a hypertrophic response to a deficient pyramidal decussation in patients with MM. In addition, gray matter alterations were observed in patients without MM, which can represent more complex mechanisms determining the presence or absence of this symptom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To investigate the relation between irrational schematic beliefs and psychological distress in caregivers of persons with traumatic brain injury (TBI). Design: Cross-sectional mail survey. Participants: One hundred sixteen caregivers of persons with TBI living in the Australian states of Victoria and Queensland who were members of community support groups and brain injury associations. Measures: The Irrational Beliefs Inventory, Brief Symptom Inventory, income satisfaction, degree of personality and behavior change in the TBI individual, and injury severity. Results: Hierarchical regression analyses showed that after controlling for the effects of characteristics of the caregiving situation and the individual with TBI, greater adherence to irrational beliefs was related to higher levels of global psychological distress. Specifically, irrational beliefs related to Worrying were associated with all areas of psychological distress. Conclusion: Results support the cognitive theory proposal that irrational beliefs play an important role in the adaptation to TBI caregiving. Findings suggest the inclusion of cognitive therapy strategies in interventions for caregivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Areas of the limbic system of adult male Wistar rats were screened for kainic-acid-induced gene expression. Polymerase-chain-reactionbased differential display identified a 147-bp cDNA fragment, which represented an mRNA that was upregulated in the entorhinal cortex and hippocampus in the kainic-acid-treated animals. The sequence was 97.8% homologous to rat 14-3-3 zeta isoform mRNA. Detailed Northern analysis revealed increased mRNA levels in the entorhinal cortex I h after kainic acid exposure and continued elevation 24 h post-injection in both the entorhinal cortex and hippocampus. Western blot analyses confirmed that the protein product of this gene was also present in increased amounts over the same time period. Immunohistochemistry and terminal transferase-mediated dUTP nick end labelling (TUNEL) detected expression of 14-3-3 protein exclusively in the entorhinal cortex and hippocampus, and only in TUNEL-positive neuronal cells. Expression of the tumor suppressor protein, p53 was also induced by kainate injection, and was co-localized with 14-3-3 zeta protein in selected cells only in the affected brain regions. The increase gene expression of 14-3-3 represents a transcription-mediated response associated with region selective neuronal damage induced by kainic acid. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have performed immunocytochemistry on rat brains using a highly specific antiserum directed against the originally described form of the glutamate transporter GLT-1 (referred to hereafter as GLT-1alpha), and another against a C-terminal splice variant of this protein, GLT-1B. Both forms of GLT-1 were abundant in rat brain, especially in regions such as the hippocampus and cerebral cortex, and macroscopic examination of sections suggested that both forms were generally regionally coexistent. However, disparities were evident; GLT-1alpha was present in the intermediate lobe of the pituitary gland, whereas GLT-1B was absent. Similar marked disparities were also noted in the external capsule, where GLT1A labeling was abundant but GLT-1B was only occasionally encountered. Conversely, GLT-1B was more extensively distributed, relative to GLT-1alpha, in areas such as the deep cerebellar nuclei. In most regions, such as the olfactory bulbs, both splice variants were present but differences were evident in their distribution. In cerebral cortex, patches were evident where GLT-1B was absent, whereas no such patches were evident for GLT-1alpha. At high resolution, other discrepancies were evident; double-labeling of areas such as hippocampus indicated that the. two splice variants may either be differentially expressed by closely apposed glial elements or that the two splice variants may be differentially targeted to distinct membrane domains of individual glial cells. (C) 2002 Wiley-Liss, Inc.