966 resultados para Body without Organs
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The efficiency of physical separation of inclusion bodies from cell debris is related to cell debris size and inclusion body release and both factors should be taken into account when designing a process. In this work, cell disruption by enzymatic treatment with lysozyme and cellulase, by homogenization, and by homogenization with ammonia pretreatment is discussed. These disruption methods are compared on the basis of inclusion body release, operating costs, and cell debris particle size. The latter was measured with cumulative sedimentation analysis in combination with membrane-associated protein quantification by SDS-PAGE and a spectrophotometric pepticloglycan quantification method. Comparison of the results obtained with these two cell debris quantification methods shows that enzymatic treatment yields cell debris particles with varying chemical composition, while this is not the case with the other disruption methods that were investigated. Furthermore, the experiments show that ammonia pretreatment with homogenization increases inclusion body release compared to homogenization without pretreatment and that this pretreatment may be used to control the cell debris size to some extent. The enzymatic disruption process gives a higher product release than homogenization with or without ammonia pretreatment at lower operating costs, but it also yields a much smaller cell debris size than the other disruption process. This is unfavorable for centrifugal inclusion body purification in this case, where cell debris is the component going to the sediment and the inclusion body is the floating component. Nevertheless, calculations show that centrifugal separation of inclusion bodies from the enzymatically treated cells gives a high inclusion body yield and purity. (C) 2004 Wiley Periodicals, Inc.
Resumo:
No Abstract
Resumo:
Background: Tuberculosis is an important cause of wasting. The functional consequences of wasting and recovery may depend on the distribution of lost and gained nutrient stores between protein and fat masses. Objective: The goal was to study nutrient partitioning, ie, the proportion of weight change attributable to changes in fat mass (FM) versus protein mass (PM), during anti mycobacterial treatment. Design: Body-composition measures were made of 21 men and 9 women with pulmonary tuberculosis at baseline and after 1 and 6 mo of treatment. All subjects underwent dual-energy X-ray absorptiometry and deuterium bromide dilution tests, and a four-compartment model of FM, total body water (TBW), bone minerals (BM), and PM was derived. The ratio of PM to FM at any time was expressed as the energy content (p-ratio). Changes in the p-ratio were related to disease severity as measured by radiologic criteria. Results: Patients gained 10% in body weight (P < 0.001) from baseline to month 6. This was mainly due to a 44% gain in FM (P < 0.001); PM, BM, and TBW did not change significantly. Results were similar in men and women. The p-ratio decreased from baseline to month 1 and then fell further by month 6. Radiologic disease severity was not correlated with changes in the p-ratio. Conclusions: Microbiological cure of tuberculosis does not restore PM within 6 mo, despite a strong anabolic response. Change in the p-ratio is a suitable parameter for use in studying the effect of disease on body composition because it allows transformation of such effects into a normal distribution across a wide range of baseline proportion between fat and protein mass.
Resumo:
Bioelectrical impedance measurements are widely used for the study of body composition. Commonly measurements are made at 50 kHz to estimate total body water or at low frequencies (< 10 kHz) to estimate extracellular fluid volume. These measurements can be obtained as single measurements at discrete frequencies, or as fitted data interpolated from plots of measurements made at multiple frequencies. This study compared single frequency and multiple frequency (MF) measurements taken in the intensive care environment. MF bioimpedance (4-1000 kHz) was measured on an adult with and without cardiorespiratory monitoring, and on babies in the neonatal intensive care unit. Measurements obtained at individual frequencies were plotted against frequency and examined for the presence of outlying points. Fitted data for measurements obtained at 5 kHz and 50 kHz with and without cardiorespiratory monitoring were compared. Significant artefacts were detected in measurements at approximately 50 kHz and at integral divisions of this frequency as a result of interference from cardiorespiratory monitors. Single frequency measurements taken at these frequencies may be subject to errors that would be difficult to detect without the aid of information obtained from MF measurements.
Resumo:
Diabetic retinopathy and acromegaly are diseases associated with excess action of GH and its effector IGF-1, and there is a need for improved therapies. We have designed all optimised 2'-O-(2-methoxyethyl)-modified phosphorothioate oligodeoxynucleotide, ATL 227446, and demonstrated its ability to Suppress GH receptor mRNA in vitro. Subcutaneous injections of ATL 227446 reduced GH receptor mRNA levels, GH binding activity and serum IGF-1 levels in mice after seven days of closing. The reduction in serum IGF-1 could be sustained for over tell weeks of dosing at therapeutically relevant levels, during which there was also a significant decrease in body weight gain in antisense-treated mice relative to saline and mismatch control-treated mice. The findings indicate that administration of an antisense oligonucleotide to the GH receptor may be applicable to human diseases in which suppression of GH action provides therapeutic benefit.
Resumo:
Objective: To determine the differences in number of years lived free of cardiovascular disease (CVD) and number of years lived with CVD between men and women who were obese, pre-obese, or normal weight at 45 years of age. Research Methods and Procedures: We constructed multistate life tables for CVD, myocardial infarction, and stroke, using data from 2551 enrollees (1130 men) in the Framingham Heart Study who were 45 years of age. Results: Obesity and pre-obesity were associated with fewer number of years free of CVD, myocardial infarction, and stroke and an increase in the number of years lived with these diseases. Forty-five-year-old obese men with no CVD survived 6.0 years [95% confidence interval (CI), 4.1; 8.1] fewer than their normal weight counterparts, whereas, for women, the difference between obese and normal weight subjects was 8.4 years (95% CI: 6.2; 10.8). Obese men and women lived with CVD 2.7 (95% CI: 1.0; 4.4) and 1.4 years (95% CI: -0.3; 3.2) longer, respectively, than normal weight individuals. Discussion: In addition to reducing life expectancy, obesity before middle age is associated with a reduction in the number of years lived free of CVD and an increase in the number of years lived with CVD. Such information is paramount for preventive and therapeutic decision-making by individuals and practitioners alike.
Resumo:
The associations of volumetric (vBMD) and areal (aBMD) bone mineral density measures with prevalent cardiovascular disease (CVD) and subclinical peripheral arterial disease (PAD) were investigated in a cohort of older men and women enrolled in the Health, Aging, and Body Composition Study. Participants were 3,075 well-functioning white and black men and women (42% black, 51% women), aged 68-80 years. Total hip, femoral neck, and trochanter aBMD were measured using dual-energy X-ray absorptiometry. Quantitative computed tomography was used to evaluate spine trabecular, integral, and cortical vBMD measures in a subgroup (n = 1,489). Logistic regression was performed to examine associations of BMD measures with CVD and PAD. The prevalence of CVD (defined by coronary heart disease, PAD, cerebrovascular disease, or congestive heart failure) was 29.8%. Among participants without CVD, 10% had subclinical PAD (defined as ankle-arm index < 0.9). Spine vBMD measures were inversely associated with CVD in men (odds ratio of integral [ORintegral] = 1.34, 95% confidence interval [CI] 1.10-1.63; ORtrabecular = 1.25, 95% CI 1.02-1.53; ORcortical = 1.36, 95% CI 1.11-1.65). In women, for each standard deviation decrease in integral vBMD, cortical vBMD, or trochanter aBMD, the odds of CVD were significantly increased by 28%, 27%, and 22%, respectively. Total hip aBMD was associated with subclinical PAD in men (OR = 1.39, 95% CI 1.03-1.84) but not in women. All associations were independent of age and shared risk factors between BMD and CVD and were not influenced by inflammatory cytokines (interleukin-6 and tumor necrosis factors-alpha). In conclusion, our results provide further evidence for an inverse association between BMD and CVD in men and women. Future research should investigate common pathophysiological links for osteoporosis and CVD.
Resumo:
In-vitro calcification of poly(2-hydroxyethyl methacrylate) (PHEMA)-based hydrogels in simulated body fluid (SBF) under a steady/batch system without agitation or stirring the solutions has been investigated. It was noted that the formation of calcium phosphate (CaP) deposits primarily proceeded through spontaneous precipitation. The CaP deposits were found both on the surface and inside the hydrogels. It appears that the effect of chemical structure or reducing the relative number of oxygen atoms in the copolymers on the degree of calcification was only important at the early stage of calcification. The morphology of the CaP deposits was observed to be spherical aggregates with a thickness of the CaP layer less than 0.5 mu m. Additionally, the CaP deposits were found to be poorly crystalline or to have nano-size crystals, or to exist mostly as an amorphous phase. Characterization of the CaP phases in the deposits revealed that the deposits were comprised mainly of whitlockite [Ca9MgH(PO4)(7)] type apatite and DCPD (CaHPO4 center dot 2H(2)O) as the precursors of hydroxyapatite [Ca-10(PO4)(6)(OH)(2)]. The presence of carbonate in the deposits was also detected during the calcification of PHEMA based hydrogels in SBF solution.
Resumo:
Aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) has been used to describe the histological lesion associated with metal-on-metal (M-M) bearings. We tested the hypothesis that the lymphoid aggregates, associated with ALVAL lesions resemble tertiary lymphoid organs (TLOs). Histopathological changes were examined in the periprosthetic tissue of 62 M-M hip replacements requiring revision surgery, with particular emphasis on the characteristics and pattern of the lymphocytic infiltrate. Immunofluorescence and immunohistochemistry were used to study the classical features of TLOs in cases where large organized lymphoid follicles were present. Synchrotron X-ray fluorescence (XRF) measurements were undertaken to detect localisation of implant derived ions/particles within the samples. Based on type of lymphocytic infiltrates, three different categories were recognised; diffuse aggregates (51%), T cell aggregates (20%), and organised lymphoid aggregates (29%). Further investigation of tissues with organised lymphoid aggregates showed that these tissues recapitulate many of the features of TLOs with T cells and B cells organised into discrete areas, the presence of follicular dendritic cells, acquisition of high endothelial venule like phenotype by blood vessels, expression of lymphoid chemokines and the presence of plasma cells. Co-localisation of implant-derived metals with lymphoid aggregates was observed. These findings suggest that in addition to the well described general foreign body reaction mediated by macrophages and a T cell mediated type IV hypersensitivity response, an under-recognized immunological reaction to metal wear debris involving B cells and the formation of tertiary lymphoid organs occurs in a distinct subset of patients with M-M implants. © 2013 Mittal et al.
Resumo:
Loss of adipose tissue in cancer cachexia has been associated with tumour production of a lipid-mobilizing factor (LMF) which has been shown to be homologous with the plasma protein zinc-a2-glycoprotein (ZAG). The aim of this study was to compare the ability of human ZAG with LMF to stimulate lipolysis in vitro and induce loss of body fat in vivo, and to determine the mechanisms involved. ZAG was purified from human plasma using a combination of Q Sepharose and Superdex 75 chromatography, and was shown to stimulate glycerol release from isolated murine epididymal adipocytes in a dose-dependent manner. The effect was enhanced by the cyclic AMP phosphodiesterase inhibitor Ro20-1724, and attenuated by freeze/thawing and the specific ß3-adrenoreceptor antagonist SR59230A. In vivo ZAG caused highly significant, time-dependent, decreases in body weight without a reduction in food and water intake. Body composition analysis showed that loss of body weight could be attributed entirely to the loss of body fat. Loss of adipose tissue may have been due to the lipolytic effect of ZAG coupled with an increase in energy expenditure, since there was a dose-dependent increase in expression of uncoupling protein-1 (UCP-1) in brown adipose tissue. These results suggest that ZAG may be effective in the treatment of obesity.