953 resultados para Bodily integrity
Resumo:
Tissue transglutaminase (tTG) is a Ca2+-dependent enzyme which cross-links proteins via e(g-glutamyl)lysine bridges. There is increasing evidence that tTG is involved in wound repair and tissue stabilization, as well as in physiological mechanisms leading to cell death. To investigate the role of this enzyme in tissue wounding leading to loss of Ca2+ homoeostasis, we initially used a model involving electroporation to reproduce cell wounding under controlled conditions. Two cell models were used whereby tTG expression is regulated either by antisense silencing in ECV 304 cells or by using transfected Swiss 3T3 cells in which tTG expression is under the control of the tet regulatory system. Using these cells, loss of Ca2+ homoeostasis following electroporation led to a tTG-dependent formation of highly cross-linked proteinaceous shells from intracellular proteins. Formation of these structures is dependent on elevated intracellular Ca2+, but it is independent of intracellular proteases and is near maximal after only 20min post-wounding. Using labelled primary amines as an indicator of tTG activity within these 'wounded cells', we demonstrate that tTG modifies a wide range of proteins that are present in both the perinuclear and intranuclear spaces. The demonstration of entrapped DNA within these shell structures, which showed limited fragmentation, provides evidence that the high degree of transglutaminase cross-linking results in the prevention of DNA release, which may serve to dampen any subsequent inflammatory response. Comparable observations were shown when monolayers of cells were mechanically wounded by scratching. In this second model of cell wounding, redistribution of tTG activity to the extracellular matrix was also demonstrated, an effect which may serve to stabilize tissues post-trauma, and thus contribute to the maintenance of tissue integrity.
Resumo:
Thermal effects in uncontrolled factory environments are often the largest source of uncertainty in large volume dimensional metrology. As the standard temperature for metrology of 20°C cannot be achieved practically or economically in many manufacturing facilities, the characterisation and modelling of temperature offers a solution for improving the uncertainty of dimensional measurement and quantifying thermal variability in large assemblies. Technologies that currently exist for temperature measurement in the range of 0-50°C have been presented alongside discussion of these temperature measurement technologies' usefulness for monitoring temperatures in a manufacturing context. Particular aspects of production where the technology could play a role are highlighted as well as practical considerations for deployment. Contact sensors such as platinum resistance thermometers can produce accuracy closest to the desired accuracy given the most challenging measurement conditions calculated to be ∼0.02°C. Non-contact solutions would be most practical in the light controlled factory (LCF) and semi-invasive appear least useful but all technologies can play some role during the initial development of thermal variability models.
Resumo:
Two classes of software that are notoriously difficult to develop on their own are rapidly merging into one. This will affect every key service that we rely upon in modern society, yet a successful merge is unlikely to be achievable using software development techniques specific to either class. This paper explains the growing demand for software capable of both self-adaptation and high integrity, and advocates the use of a collection of "@runtime" techniques for its development, operation and management. We summarise early research into the development of such techniques, and discuss the remaining work required to overcome the great challenge of self-adaptive high-integrity software. © 2011 ACM.
Resumo:
Professional standards of ethics proclaim the core values of a profession, describe expected professional duties and responsibilities, and provide a framework for ethical practice and ethical decision-making. The purpose of this mixed, quantitative and qualitative, survey study was to examine HRD professionals' perceptions about the AHRD Standards on Ethics and Integrity, how HRD professionals used the Standards for research and decision-making, and the extent to which the Standards provided guidance for ethical decision-making. Through an on-line survey instrument, 182 members of AHRD were surveyed. The open-ended questions were analyzed using thematic analysis to expand on, inform, and support the quantitative findings. The close-ended questions were analyzed with frequency distributions, descriptive statistics, cross tabulations, and Spearman rank correlations. The results showed a significant relationship between (a) years of AHRD membership and level of familiarity with the Standards, (b) years of AHRD membership and use of the Standards for research, and (c) level of familiarity with the Standards and use of the Standards for research. There were no significant differences among scholars, scholar practitioners, practitioners, and students regarding their perceptions about the Standards. The results showed that the Standards were not well known or widely used. Nevertheless, the results indicated overall positive perceptions about the Standards. Seventy percent agreed that the Standards provided an appropriate set of ethical principles and reflected respondents' own standards of conduct. Seventy-eight percent believed that the Standards were important for defining HRD as a profession and 54% believed they were important for developing a sense of belonging to the HRD profession. Fifty-one percent believed the Standards should be enforceable and 61% agreed members should sign the membership application form showing willingness to adhere to the Standards. Seventy-seven percent based work-related ethical decisions on personal beliefs of right and wrong and 56% on established professional values and rules of right and wrong. The findings imply that if the professional standards of ethics are to influence the profession, they should be widely publicized and discussed among members, they should have some binding power, and their use should be encouraged.
Resumo:
The paper examines the nature of qualitative empirical studies published in the AHRD proceedings from 1999-2003 and discusses findings on method, rationale for method, data collection, sampling strategies, and integrity measures.
Resumo:
Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. ^ We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. ^ We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. ^ We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). ^ In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.^
Resumo:
Spinal cord injury causes permanent disabling manifestations, affecting the anatomic integrity, bodily changes and functional limitations related to the disability state. It was aimed to analyze the social representation, stress level and experiences of fishermen victims of spinal cord injury caused by diving accident in the Northern beaches of Brazil. It is a descriptive - exploratory study with quantitative, qualitative and representational data developed i n fishermen’s villages in nine beaches of Northern shore/RN, between October 2013 to August 2014, after the approval of the Ethics Committee in Research of the Universidade Federal do Rio Grande do Norte, under the number 431.891/2013, CAAE 20818913.0.0000 .5537. The sample was composed by 44 fishermen with spinal cord injury, defined from inclusion and exclusion criteria of the participants. It was used as instrument to collect the data a semi structured interview. Quantitative data was analyzed by descrip tive statistics, showing the data through table, boxes and graphics by Microsoft Excel. Data from interviews were submitted to the software called Analyse Lexicale par Contexte d’un Ensemble de Segments de Texte (ALCESTE) using the analysis of the Social R epresentation Theory and Center Core Theory. It is shown the outcomes of the research through four articles, following the normative recommendations of the journals. Participants of the study were all male, age mean 49,6 years, elementary school (68,2%), m arried (77,3%); paraplegia sequel (50,0%). Most of them showed stress (75,0%), almost in the exhaustion stage (33,3%), prevalent insomnia symptoms (95,5%) in the last hours; hypertension (97,7%) in the last week and sexual troubles (95,5%) in the last mont h). Decompressive illness caused spinal cord injury (57,1%), occurred prevalently in low summer (75,0%), northern shore (96,4%), having as main consequences the paresthesia and pain in the upper and lower limbs (67,9%), followed by death (25,0%). Interview analysis under the understanding of Social Representation of spinal cord injury allowed the appearance of seven categories: Treatment: limitation and expectative; Spinal Cord injury: before and after; Retirement: reality yet to come; Disability: dependenc y, incapacity, vulnerability; Overcoming and autonomy; Self feelings: physics losses and new start; Life and labor: impediments, plans and changes. The center core of the representation is found in the first category by the expectative and limitation on th e treatment, meanwhile the outskirt elements are in seventh and third categories. Physics limitation for fishing activities and retirement expectative is the most outstanding of the structure. Social representation concerning spinal cord injury is found in a transaction moment between before and after with the prevented fishing activity, coping of the situation with the potential remaining. The anchoring is established in the desire for changes related to the improvements of life and health conditions exper ienced day by day through faith. This study finishes pointing out the range of the objectives, which topic is relevant for public health of fishermen. It is suggested prevention measures, promotion and health recovery of fishermen, besides safe, healthy an d worthy conditions as a compromise of social and health politics.
Resumo:
Peer reviewed
Resumo:
Surface finish is one of the most relevant aspects of machining operations, since it is one of the principle methods to assess quality. Also, surface finish influences mechanical properties such as fatigue behavior, wear, corrosion, etc. The feed, the cutting speed, the cutting tool material, the workpiece material and the cutting tool wear are some of the most important factors that affects the surface roughness of the machined surface. Due to the importance of the martensitic 416 stainless steel in the petroleum industry, especially in valve parts and pump shafts, this material was selected to study the influence of the feed per tooth and cutting speed on tool wear and surface integrity. Also the influence of tool wear on surface roughness is analyzed. Results showed that high values of roughness are obtained when using low cutting speed and feed per tooth and by using these conditions tool wear decreases prolonging tool life. Copyright © 2009 by ASME.
Resumo:
The complete and faithful duplication of the genome is essential to ensure normal cell division and organismal development. Eukaryotic DNA replication is initiated at multiple sites termed origins of replication that are activated at different time through S phase. The replication timing program is regulated by the S-phase checkpoint, which signals and repairs replicative stress. Eukaryotic DNA is packaged with histones into chromatin, thus DNA-templated processes including replication are modulated by the local chromatin environment such as post-translational modifications (PTMs) of histones.
One such epigenetic mark, methylation of lysine 20 on histone H4 (H4K20), has been linked to chromatin compaction, transcription, DNA repair and DNA replication. H4K20 can be mono-, di- and tri-methylated. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7 and subsequent di-/tri- methylation is catalyzed by Suv4-20. Prior studies have shown that PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which may be partially attributed to defects in origin selection and activation. Meanwhile, overexpression of mammalian PR-Set7 recruits components of pre-Replication Complex (pre-RC) onto chromatin and licenses replication origins for re-replication. However, these studies were limited to only a handful of mammalian origins, and it remains unclear how PR-Set7 impacts the replication program on a genomic scale. Finally, the methylation substrates of PR-Set7 include both histone (H4K20) and non-histone targets, therefore it is necessary to directly test the role of H4K20 methylation in PR-Set7 regulated phenotypes.
I employed genetic, cytological, and genomic approaches to better understand the role of H4K20 methylation in regulating DNA replication and genome stability in Drosophila melanogaster cells. Depletion of Drosophila PR-Set7 by RNAi in cultured Kc167 cells led to an ATR-dependent cell cycle arrest with near 4N DNA content and the accumulation of DNA damage, indicating a defect in completing S phase. The cells were arrested at the second S phase following PR-Set7 downregulation, suggesting that it was an epigenetic effect that coupled to the dilution of histone modification over multiple cell cycles. To directly test the role of H4K20 methylation in regulating genome integrity, I collaborated with the Duronio Lab and observed spontaneous DNA damage on the imaginal wing discs of third instar mutant larvae that had an alanine substitution on H4K20 (H4K20A) thus unable to be methylated, confirming that H4K20 is a bona fide target of PR-Set7 in maintaining genome integrity.
One possible source of DNA damage due to loss of PR-Set7 is reduced origin activity. I used BrdU-seq to profile the genome-wide origin activation pattern. However, I found that deregulation of H4K20 methylation states by manipulating the H4K20 methyltransferases PR-Set7 and Suv4-20 had no impact on origin activation throughout the genome. I then mapped the genomic distribution of DNA damage upon PR-Set7 depletion. Surprisingly, ChIP-seq of the DNA damage marker γ-H2A.v located the DNA damage to late replicating euchromatic regions of the Drosophila genome, and the strength of γ-H2A.v signal was uniformly distributed and spanned the entire late replication domain, implying stochastic replication fork collapse within late replicating regions. Together these data suggest that PR-Set7-mediated monomethylation of H4K20 is critical for maintaining the genomic integrity of late replicating domains, presumably via stabilization of late replicating forks.
In addition to investigating the function of H4K20me, I also used immunofluorescence to characterize the cell cycle regulated chromatin loading of Mcm2-7 complex, the DNA helicase that licenses replication origins, using H4K20me1 level as a proxy for cell cycle stages. In parallel with chromatin spindown data by Powell et al. (Powell et al. 2015), we showed a continuous loading of Mcm2-7 during G1 and a progressive removal from chromatin through S phase.