863 resultados para Block-fading (BF) channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The purpose of this work was to study the influence of cell differentiation on the mRNA expression of transporters and channels in Caco-2 cells and to assess Caco-2 cells as a model for carrier-mediated drug transport in the intestines. METHOD: Gene mRNA expression was measured using a custom-designed microarray chip with 750 deoxyoligonucleotide probes (70mers). Each oligomer was printed four times on poly-lysine-coated glass slides. Expression profiles were expressed as ratio values between fluorescence intensities of Cy3 and Cy5 dye-labeled cDNA derived from poly(A) + RNA samples of Caco-2 cells and total RNA of human intestines. RESULTS: Significant differences in the mRNA expression profile of transporters and channels were observed upon differentiation of Caco-2 cells from 5 days to 2 weeks in culture, including changes for MAT8, S-protein, and Nramp2. Comparing Caco-2 cells of different passage number revealed few changes in mRNAs except for GLUT3, which was down-regulated 2.4-fold within 13 passage numbers. Caco-2 cells had a similar expression profile when either cultured in flasks or on filters but differed more strongly from human small and large intestine, regardless of the differentiation state of Caco-2 cells. Expression of several genes highly transcribed in small or large intestines differed fourfold or more in Caco-2 cells. CONCLUSIONS: Although Caco-2 cells have proven a suitable model for studying carrier-mediated transport in human intestines, the expression of specific transporter and ion channel genes may differ substantially.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: The suprascapular nerve (SSN) block is frequently performed for different shoulder pain conditions and for perioperative and postoperative pain control after shoulder surgery. Blind and image-guided techniques have been described, all of which target the nerve within the supraspinous fossa or at the suprascapular notch. This classic target point is not always ideal when ultrasound (US) is used because it is located deep under the muscles, and hence the nerve is not always visible. Blocking the nerve in the supraclavicular region, where it passes underneath the omohyoid muscle, could be an attractive alternative. METHODS: In the first step, 60 volunteers were scanned with US, both in the supraclavicular and the classic target area. The visibility of the SSN in both regions was compared. In the second step, 20 needles were placed into or immediately next to the SSN in the supraclavicular region of 10 cadavers. The accuracy of needle placement was determined by injection of dye and following dissection. RESULTS: In the supraclavicular region of volunteers, the nerve was identified in 81% of examinations (95% confidence interval [CI], 74%-88%) and located at a median depth of 8 mm (interquartile range, 6-9 mm). Near the suprascapular notch (supraspinous fossa), the nerve was unambiguously identified in 36% of examinations (95% CI, 28%-44%) (P < 0.001) and located at a median depth of 35 mm (interquartile range, 31-38 mm; P < 0.001). In the cadaver investigation, the rate of correct needle placement of the supraclavicular approach was 95% (95% CI, 86%-100%). CONCLUSIONS: Visualization of the SSN with US is better in the supraclavicular region as compared with the supraspinous fossa. The anatomic dissections confirmed that our novel supraclavicular SSN block technique is accurate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kidneys are the main regulator of salt homeostasis and blood pressure. In the distal region of the tubule active Na-transport is finely tuned. This transport is regulated by various hormonal pathways including aldosterone that regulates the reabsorption at the level of the ASDN, comprising the late DCT, the CNT and the CCD. In the ASDN, the amiloride-sensitive epithelial Na-channel (ENaC) plays a major role in Na-homeostasis, as evidenced by gain-of function mutations in the genes encoding ENaC, causing Liddle's syndrome, a severe form of salt-sensitive hypertension. In this disease, regulation of ENaC is compromised due to mutations that delete or mutate a PY-motif in ENaC. Such mutations interfere with Nedd4-2- dependent ubiquitylation of ENaC, leading to reduced endocytosis of the channel, and consequently to increased channel activity at the cell surface. After endocytosis ENaC is targeted to the lysosome and rapidly degraded. Similarly to other ubiquitylated and endocytosed plasma membrane proteins (such as the EGFR), it is likely that the multi-protein complex system ESCRT is involved. To investigate the involvement of this system we tested the role of one of the ESCRT proteins, Tsg101. Here we show that Tsg101 interacts endogenously and in transfected HEK-293 cells with all three ENaC sub-units. Furthermore, mutations of cytoplasmic lysines of ENaC subunits lead to the disruption of this interaction, indicating a potential involvement of ubiquitin in Tsg101 / ENaC interaction. Tsg101 knockdown in renal epithelial cells increases the total and cell surface pool of ENaC, thus implying TsglOl and consequently the ESCRT system in ENaC degradation by the endosomal/lysosomal system. - Les reins sont les principaux organes responsables de la régulation de la pression artérielle ainsi que de la balance saline du corps. Dans la région distale du tubule, le transport actif de sodium est finement régulé. Ce transport est contrôlé par plusieurs hormones comme l'aldostérone, qui régule la réabsorption au niveau de l'ASDN, segment comprenant la fin du DCT, le CNT et le CCD. Dans l'ASDN, le canal à sodium épithélial sensible à l'amiloride (ENaC) joue un rôle majeur dans l'homéostasie sodique, comme cela fut démontré par les mutations « gain de fonction » dans les gênes encodant ENaC, causant ainsi le syndrome de Liddle, une forme sévère d'hypertension sensible au sel. Dans cette maladie, la régulation d'ENaC est compromise du fait des mutations qui supprime ou mute le domaine PY présent sur les sous-unités d'ENaC. Ces mutations préviennent l'ubiquitylation d'ENaC par Nedd4-2, conduisant ainsi à une baisse de l'endocytose du canal et par conséquent une activité accrue d'ENaC à la surface membranaire. Après endocytose, ENaC est envoyé vers le lysosome et rapidement dégradé. Comme d'autres protéines membranaires ubiquitylées et endocytées (comme l'EGFR), il est probable que le complexe multi-protéique ESCRT est impliqué dans le transport d'ENaC au lysosome. Pour étudier l'implication du système d'ESCRT dans la régulation d'ENaC nous avons testé le rôle d'une protéine de ces complexes, TsglOl. Notre étude nous a permis de démontrer que TsglOl se lie aux trois sous-unités ENaC aussi bien en co-transfection dans des cellules HEK-293 que de manière endogène. De plus, nous avons pu démontrer l'importance de l'ubiquitine dans cette interaction par la mutation de toutes les lysines placées du côté cytoplasmique des sous-unités d'ENaC, empêchant ainsi l'ubiquitylation de ces sous-unités. Enfin, le « knockdown » de TsglOl dans des cellules épithéliales de rein induit une augmentation de l'expression d'ENaC aussi bien dans le «pool» total qu'à la surface membranaire, indiquant ainsi un rôle pour TsglOl et par conséquent du système d'ESCRT dans la dégradation d'ENaC par la voie endosome / lysosome. - Le corps humain est composé d'organes chacun spécialisé dans une fonction précise. Chaque organe est composé de cellules, qui assurent la fonction de l'organe en question. Ces cellules se caractérisent par : - une membrane qui leur permet d'isoler leur compartiment interne (milieu intracellulaire ou cytoplasme) du liquide externe (milieu extracellulaire), - un noyau, où l'ADN est situé, - des protéines, sortent d'unités fonctionnelles ayant une fonction bien définie dans la cellule. La séparation entre l'extérieure et l'intérieure de la cellule est essentielle pour le maintien des composants de ces milieux ainsi que pour la bonne fonction de l'organisme et des cellules. Parmi ces composants, le sodium joue un rôle essentiel car il conditionne le maintien de volume sanguin en participant au maintien du volume extracellulaire. Une augmentation du sodium dans l'organisme provoque donc une augmentation du volume sanguin et ainsi provoque une hypertension. De ce fait, le contrôle de la quantité de sodium présente dans l'organisme est essentiel pour le bon fonctionnement de l'organisme. Le sodium est apporté par l'alimentation, et c'est au niveau du rein que va s'effectuer le contrôle de la quantité de sodium qui va être retenue dans l'organisme pour le maintien d'une concentration normale de sodium dans le milieu extracellulaire. Le rein va se charger de réabsorber toutes sortes de solutés nécessaires pour l'organisme avant d'évacuer les déchets ou le surplus de ces solutés en produisant l'urine. Le rein va se charger de réabsorber le sodium grâce à différentes protéines, parmi elle, nous nous sommes intéressés à une protéine appelée ENaC. Cette protéine joue un rôle important dans la réabsorption du sodium, et lorsqu'elle fonctionne mal, comme il a pu être observé dans certaines maladies génétiques, il en résulte des problèmes d'hypo- ou d'hypertension. Les problèmes résultant du mauvais fonctionnement de cette protéine obligent donc la cellule à réguler efficacement ENaC par différents mécanismes, notamment en diminuant son expression et en dégradant le « surplus ». Dans cette travail de thèse, nous nous sommes intéressés au mécanisme impliqué dans la dégradation d'ENaC et plus précisément à un ensemble de protéines, appelé ESCRT, qui va se charger « d'escorter » une protéine vers un sous compartiment à l'intérieur de la cellule ou elle sera dégradée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial sodium channel (ENaC) is a key element for the maintenance of sodium balance and the regulation of blood pressure. Three homologous ENaC subunits (alpha, beta and gamma) assemble to form a highly Na+-selective channel. However, the subunit stoichiometry of ENaC has not yet been solved. Quantitative analysis of cell surface expression of ENaC alpha, beta and gamma subunits shows that they assemble according to a fixed stoichiometry, with alpha ENaC as the most abundant subunit. Functional assays based on differential sensitivities to channel blockers elicited by mutations tagging each alpha, beta and gamma subunit are consistent with a four subunit stoichiometry composed of two alpha, one beta and one gamma. Expression of concatameric cDNA constructs made of different combinations of ENaC subunits confirmed the four subunit channel stoichiometry and showed that the arrangement of the subunits around the channel pore consists of two alpha subunits separated by beta and gamma subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fatty acid oxygenation up-regulated 2 (fou2) mutant in Arabidopsis thaliana creates a gain-of-function allele in a non-selective cation channel encoded by the Two Pore Channel 1 (TPC1) gene. This mutant genetically implicates cation fluxes in the control of the positive feedback loop whereby jasmonic acid (JA) stimulates its own synthesis. In this study we observed extensive transcriptome reprogramming in healthy fou2 leaves closely resembling that induced by treatment with methyl jasmonate, biotic stresses and the potassium starvation response. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA-inducible proteins. In agreement with these analyses, epistasis studies performed by crossing fou2 with aos indicated that elevated levels of JA in fou2 are the major determinant of the mutant phenotype. In addition, generation of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants showed that the fou2 phenotype was only weakly affected by ABA levels and unaffected by mutations in NPR1 and ETR1. The results now suggest possible mechanisms whereby fou2 could induce JA synthesis/signaling early in the wound response. In contrast to fou2, transcriptome analysis of a loss-of-function allele of TPC1, tpc1-2, revealed no differential expression of JA biosynthesis genes in resting leaves. However, the analysis disclosed reduced mRNA levels of the pathogenesis-related genes PDF1.2a and THI2.1 in healthy and diseased tpc1-2 leaves. The results suggest that wild-type TPC1 contributes to their expression by mechanisms somewhat different from those affecting their expression in fou2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mutations in the SCN9A gene cause chronic pain and pain insensitivity syndromes. We aimed to study clinical, genetic, and electrophysiological features of paroxysmal extreme pain disorder (PEPD) caused by a novel SCN9A mutation. METHODS: Description of a 4-generation family suffering from PEPD with clinical, genetic and electrophysiological studies including patch clamp experiments assessing response to drug and temperature. RESULTS: The family was clinically comparable to those reported previously with the exception of a favorable effect of cold exposure and a lack of drug efficacy including with carbamazepine, a proposed treatment for PEPD. A novel p.L1612P mutation in the Nav1.7 voltage-gated sodium channel was found in the four affected family members tested. Electrophysiologically the mutation substantially depolarized the steady-state inactivation curve (V1/2 from -61.8 ± 4.5 mV to -30.9 ± 2.2 mV, n = 4 and 7, P < 0.001), significantly increased ramp current (from 1.8% to 3.4%, n = 10 and 12) and shortened recovery from inactivation (from 7.2 ± 5.6 ms to 2.2 ± 1.5 ms, n = 11 and 10). However, there was no persistent current. Cold exposure reduced peak current and prolonged recovery from inactivation in wild-type and mutated channels. Amitriptyline only slightly corrected the steady-state inactivation shift of the mutated channel, which is consistent with the lack of clinical benefit. CONCLUSIONS: The novel p.L1612P Nav1.7 mutation expands the PEPD spectrum with a unique combination of clinical symptoms and electrophysiological properties. Symptoms are partially responsive to temperature but not to drug therapy. In vitro trials of sodium channel blockers or temperature dependence might help predict treatment efficacy in PEPD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amiloride-sensitive epithelial sodium channel (ENaC) constitutes a limiting step in sodium reabsorption across distal airway epithelium and controlling mucociliary clearance. ENaC is activated by serine proteases secreted in the extracellular milieu. In cystic fibrosis lungs, high concentrations of secreted neutrophil elastase (NE) are observed. hNE could activate ENaC and contribute to further decreased mucociliary clearance. The aims of this study were (i) to test the ability of an engineered human neutrophil elastase inhibitor (EPI-hNE4) to specifically inhibit the elastase activation of ENaC-mediated amiloride-sensitive currents (I(Na)) and (ii) to examine the effect of elastase on cell surface expression of ENaC and its cleavage pattern (exogenous proteolysis). Oocytes were exposed to hNE (10-100 microg/ml) and/or trypsin (10 microg/ml) for 2-5 min in the presence or absence of EPI-hNE4 (0.7 microm). hNE activated I(Na) 3.6-fold (p < 0.001) relative to non-treated hENaC-injected oocytes. EPI-hNE4 fully inhibited hNE-activated I(Na) but had no effect on trypsin- or prostasin-activated I(Na). The co-activation of I(Na) by hNE and trypsin was not additive. Biotinylation experiments revealed that cell surface gamma ENaC (but not alpha or beta ENaC) exposed to hNE for 2 min was cleaved (as a 67-kDa fragment) and correlated with increased I(Na). The elastase-induced exogenous proteolysis pattern is distinct from the endogenous proteolysis pattern induced upon preferential assembly, suggesting a causal relationship between gamma ENaC cleavage and ENaC activation, taking place at the plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Isolated congenital atrioventricular block (CAVB) diagnosed in utero is associated with a high morbidity and mortality. Prognosis is especially poor when heart rate drops below 55 beats per minute (bpm) and when fetal hydrops develops. We describe the natural history and outcome of 24 infants with isolated CAVB diagnosed in utero, review the literature, and assess the risk factors that could predict outcome. METHODS: This was a retrospective multicenter study of 24 patients with isolated CAVB diagnosed in utero. RESULTS: CAVB was detected at a mean gestational age (GA) of 24.7 +/- 5.1 weeks. Ten fetuses initially presented with complete heart block. Low heart rate or incomplete heart block was the first documentation of bradyarrhythmia in the other 14 fetuses. In 11 of them, CAVB developed during pregnancy after a median time of 3 (range 1-16) weeks. Fetal hydrops developed in 10 of 24 (42%) fetuses at a mean GA of 27.6 +/- 5.1 weeks. Hydropic fetuses showed lower heart rates during pregnancy (47 +/- 10 bpm) than non-hydropic fetuses (57 +/- 10 bpm). There were three intrauterine deaths; all were hydropic and female. Nine viable females and 12 males were born at a mean GA of 37.1 +/- 6.1 weeks with an average birth weight of 3097 +/- 852 g. Fifteen CAVB patients required pacemaker (PM) intervention, 10 of them immediately after birth. Dilated cardiomyopathy (DCM) developed in three infants of whom two died of congestive heart failure, shortly after the diagnosis was made; one is still alive. Mortality before or after birth was 21%, and was associated with heart rates below 50 bpm and development of fetal hydrops. Poor outcome, defined as death, PM implantation, or development of DCM, occurred in 83% of cases and was associated with heart rates below 60 bpm during pregnancy. CONCLUSIONS: Isolated CAVB diagnosed in utero is associated with high morbidity and mortality. Patients who develop fetal hydrops show lower heart rates during pregnancy than patients who do not. A fetal heart rate below 50 bpm and development of fetal hydrops is associated with increased mortality. Rates below 60 bpm are associated with PM requirement and/or DCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A myxosporean parasite in the gill lamellae of the freshwater teleost fish, Sciades herzbergii (Ariidae) (Block, 1794), from the Poti River (Northeast of Brazil) was described by light and electron microscopy studies. Polysporic histozoic cyst-like plasmodia containing several life-cycle stages, including mature spores, were observed. The spores were pyriform and uninucleate, measuring 9.15 ± 0.39 μm (n = 50) long, 4.36 ± 0.23 μm (n = 25) wide and 2.61 ± 0.31 μm (n = 25) thick. Elongated pyriform polar capsules (PC) were of equal size (4.44 ± 0.41 μm long and 1.41 ± 0.42 μm in diameter) and each contained a polar filament with 9-10 coils obliquely arranged in relation to the axis of PC. The PC wall was composed of two layers of different electron densities. Histological analysis revealed the close contact of the cyst-like plasmodia with the basal portion of the epithelial gill layer, which exhibited some alterations in the capillary vessels. Based on the morphological and ultrastructural differences, the similarity of the spore features to those of the genus Myxobolus and the specificity of this host to previously described species, we describe a new species named Myxobolus sciades n. sp. in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to perinatal hypoxia results in alteration of the adult pulmonary circulation, which is linked among others to alterations in K channels in pulmonary artery (PA) smooth muscle cells. In particular, large conductance Ca-activated K (BKCa) channels protein expression and activity were increased in adult PA from mice born in hypoxia compared with controls. We evaluated long-term effects of perinatal hypoxia on the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway-mediated activation of BKCa channels, using isoproterenol, forskolin, and dibutyryl-cAMP. Whole-cell outward current was higher in pulmonary artery smooth muscle cells from mice born in hypoxia compared with controls. Spontaneous transient outward currents, representative of BKCa activity, were present in a greater proportion in pulmonary artery smooth muscle cells of mice born in hypoxia than in controls. Agonists induced a greater relaxation in PA of mice born in hypoxia compared with controls, and BKCa channels contributed more to the cAMP/PKA-mediated relaxation in case of perinatal hypoxia. In summary, perinatal hypoxia enhanced cAMP-mediated BKCa channels activation in adult murine PA, suggesting that this pathway could be a potential target for modulating adult pulmonary vascular tone after perinatal hypoxia.