374 resultados para Blades
Resumo:
Paraehlersia San Martin, 2003 is reported for the first time for the Atlantic coast off South America based on specimens collected off Brazil and Argentina. The specimens belong to two new species, which are herein described. Paraehlersia longichaetosa sp. nov., is characterized by having spiniger-like chaetae with long blades, up to 120 mu m in length, bidentate anterior falcigers, with relatively coarse subdistal tooth, bidentate dorsal simple chaetae, with teeth about same size, and subdistally irregularly inflated aciculae, apparently hollow, with acute tip. Paraehlersia martapolae sp. nov., has spiniger-like chaetae with shorter blades, up to 82 mu m in length, bidentate falcigers, with thin subdistal tooth, distally irregularly rounded dorsal simple chaetae, and aciculae subdistally bent at almost right angle, sometimes with apparently flattened top. These new species are compared to their most similar congeners. Additionally, a table summarizing relevant morphological traits of all currently known species of Paraehlersia is included.
Resumo:
Smilax L. in Brazil is represented by 32 taxa and it is a taxonomically difficult genus because the plants are dioecious and show wide phenotypic variation. The analysis and use of leaf anatomy characters is recognized as a frequently successful taxonomic method to distinguish between individual taxon, when floral material is absent or minute differences in flowers and foliage exist such as in Smilax. The aim of this study was to characterize the anatomical features of the aerial organs in Smilax syphilitica collected from the Atlantic Rainforest, in Santa Teresa-ES and the Smilax aff syphilitica from the Amazon Rainforest, in Manaus, Brazil. For this, a total of three samples of Smilax were collected per site. Sample leaves and stems were fixed with FAA 50, embedded in historesin, sectioned on a rotary microtome, stained and mounted in synthetic resin. Additionally, histochemical tests were performed and cuticle ornamentation was analyzed with standard scanning electron microscopy. S. syphilitica and S. aff syphilitica differed in cuticle ornamentation, epidermal cell arrangement and wall thickness, stomata type and orientation, calcium oxalate crystal type, and position of stem thorns. Leaf blades of S. syphilitica from the Amazon Rainforest have a network of rounded ridges on both sides, while in S. aff syphilitica, these ridges are parallel and the spaces between them are filled with numerous membranous platelets. Viewed from the front, the epidermal cells of S. syphilitica have sinuous walls (even more pronounced in samples from the Amazon); while in S. aff syphilitica, these cells are also sinuous but elongated in the cross-section of the blade and arranged in parallel. Stomata of S. syphilitica are paracytic, whereas in S. aff syphilitica, are both paracytic and anisocytic, and their polar axes are directed towards the mid-vein. Calcium oxalate crystals in S. syphilitica are prisms, whereas in S. aff syphilitica, crystal sand. Thorns occur in nodes and internodes in S. syphilitica but only in internodes in S. aff syphilitica. These features have proven to be of diagnostic value and may support a separation into two species, but future studies are needed to confirm that S. aff syphilitica is indeed a new taxon. Rev. Biol. Trop. 60(3): 1137-1148. Epub 2012 September 01.
Resumo:
Primary stability of stems in cementless total hip replacements is recognized to play a critical role for long-term survival and thus for the success of the overall surgical procedure. In Literature, several studies addressed this important issue. Different approaches have been explored aiming to evaluate the extent of stability achieved during surgery. Some of these are in-vitro protocols while other tools are coinceived for the post-operative assessment of prosthesis migration relative to the host bone. In vitro protocols reported in the literature are not exportable to the operating room. Anyway most of them show a good overall accuracy. The RSA, EBRA and the radiographic analysis are currently used to check the healing process of the implanted femur at different follow-ups, evaluating implant migration, occurance of bone resorption or osteolysis at the interface. These methods are important for follow up and clinical study but do not assist the surgeon during implantation. At the time I started my Ph.D Study in Bioengineering, only one study had been undertaken to measure stability intra-operatively. No follow-up was presented to describe further results obtained with that device. In this scenario, it was believed that an instrument that could measure intra-operatively the stability achieved by an implanted stem would consistently improve the rate of success. This instrument should be accurate and should give to the surgeon during implantation a quick answer concerning the stability of the implanted stem. With this aim, an intra-operative device was designed, developed and validated. The device is meant to help the surgeon to decide how much to press-fit the implant. It is essentially made of a torsional load cell, able to measure the extent of torque applied by the surgeon to test primary stability, an angular sensor that measure the relative angular displacement between stem and femur, a rigid connector that enable connecting the device to the stem, and all the electronics for signals conditioning. The device was successfully validated in-vitro, showing a good overall accuracy in discriminating stable from unstable implants. Repeatability tests showed that the device was reliable. A calibration procedure was then performed in order to convert the angular readout into a linear displacement measurement, which is an information clinically relevant and simple to read in real-time by the surgeon. The second study reported in my thesis, concerns the evaluation of the possibility to have predictive information regarding the primary stability of a cementless stem, by measuring the micromotion of the last rasp used by the surgeon to prepare the femoral canal. This information would be really useful to the surgeon, who could check prior to the implantation process if the planned stem size can achieve a sufficient degree of primary stability, under optimal press fitting conditions. An intra-operative tool was developed to this aim. It was derived from a previously validated device, which was adapted for the specific purpose. The device is able to measure the relative micromotion between the femur and the rasp, when a torsional load is applied. An in-vitro protocol was developed and validated on both composite and cadaveric specimens. High correlation was observed between one of the parameters extracted form the acquisitions made on the rasp and the stability of the corresponding stem, when optimally press-fitted by the surgeon. After tuning in-vitro the protocol as in a closed loop, verification was made on two hip patients, confirming the results obtained in-vitro and highlighting the independence of the rasp indicator from the bone quality, anatomy and preserving conditions of the tested specimens, and from the sharpening of the rasp blades. The third study is related to an approach that have been recently explored in the orthopaedic community, but that was already in use in other scientific fields. It is based on the vibration analysis technique. This method has been successfully used to investigate the mechanical properties of the bone and its application to evaluate the extent of fixation of dental implants has been explored, even if its validity in this field is still under discussion. Several studies have been published recently on the stability assessment of hip implants by vibration analysis. The aim of the reported study was to develop and validate a prototype device based on the vibration analysis technique to measure intra-operatively the extent of implant stability. The expected advantages of a vibration-based device are easier clinical use, smaller dimensions and minor overall cost with respect to other devices based on direct micromotion measurement. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The fourth study concerns the application of the device based on the vibration analysis technique to several cases, considering both composite and cadaveric specimens. Different degrees of bone quality were tested, as well as different femur anatomies and several levels of press-fitting were considered. The aim of the study was to verify if it is possible to discriminate between stable and quasi-stable implants, because this is the most challenging detection for the surgeon in the operation room. Moreover, it was possible to validate the measurement protocol by comparing the results of the acquisitions made with the vibration-based tool to two reference measurements made by means of a validated technique, and a validated device. The results highlighted that the most sensitive parameter to stability is the shift in resonance frequency of the stem-bone system, showing high correlation with residual micromotion on all the tested specimens. Thus, it seems possible to discriminate between many levels of stability, from the grossly loosened implant, through the quasi-stable implants, to the definitely stable one. Finally, an additional study was performed on a different type of hip prosthesis, which has recently gained great interest thus becoming fairly popular in some countries in the last few years: the hip resurfacing prosthesis. The study was motivated by the following rationale: although bone-prosthesis micromotion is known to influence the stability of total hip replacement, its effect on the outcome of resurfacing implants has not been investigated in-vitro yet, but only clinically. Thus the work was aimed at verifying if it was possible to apply to the resurfacing prosthesis one of the intraoperative devices just validated for the measurement of the micromotion in the resurfacing implants. To do that, a preliminary study was performed in order to evaluate the extent of migration and the typical elastic movement for an epiphyseal prosthesis. An in-vitro procedure was developed to measure micromotions of resurfacing implants. This included a set of in-vitro loading scenarios that covers the range of directions covered by hip resultant forces in the most typical motor-tasks. The applicability of the protocol was assessed on two different commercial designs and on different head sizes. The repeatability and reproducibility were excellent (comparable to the best previously published protocols for standard cemented hip stems). Results showed that the procedure is accurate enough to detect micromotions of the order of few microns. The protocol proposed was thus completely validated. The results of the study demonstrated that the application of an intra-operative device to the resurfacing implants is not necessary, as the typical micromovement associated to this type of prosthesis could be considered negligible and thus not critical for the stabilization process. Concluding, four intra-operative tools have been developed and fully validated during these three years of research activity. The use in the clinical setting was tested for one of the devices, which could be used right now by the surgeon to evaluate the degree of stability achieved through the press-fitting procedure. The tool adapted to be used on the rasp was a good predictor of the stability of the stem. Thus it could be useful for the surgeon while checking if the pre-operative planning was correct. The device based on the vibration technique showed great accuracy, small dimensions, and thus has a great potential to become an instrument appreciated by the surgeon. It still need a clinical evaluation, and must be industrialized as well. The in-vitro tool worked very well, and can be applied for assessing resurfacing implants pre-clinically.
Resumo:
Nowadays offshore wind turbines represents a valid answer for energy production but with an increasing in costs mainly due to foundation technology required. Hybrid foundations composed by suction caissons over which is welded a tower supporting the nacelle and the blades allows a strong costs reduction. Here a monopod configuration is studied in a sandy soil in a 10 m water depth. Bearing capacity, sliding resistance and pull-out resistance are evaluated. In a second part the installation process occurring in four steps is analysed. considering also the effect of stress enhancement due to frictional forces opposing to penetration growing at skirt sides both inside and outside. In a three dimensional finite element model using Straus7 the soil non-linearity is considered in an approximate way through an iterative procedure using the Yokota empirical decay curves.
Resumo:
Flow features inside centrifugal compressor stages are very complicated to simulate with numerical tools due to the highly complex geometry and varying gas conditions all across the machine. For this reason, a big effort is currently being made to increase the fidelity of the numerical models during the design and validation phases. Computational Fluid Dynamics (CFD) plays an increasing role in the assessment of the performance prediction of centrifugal compressor stages. Historically, CFD was considered reliable for performance prediction on a qualitatively level, whereas tests were necessary to predict compressors performance on a quantitatively basis. In fact "standard" CFD with only the flow-path and blades included into the computational domain is known to be weak in capturing efficiency level and operating range accurately due to the under-estimation of losses and the lack of secondary flows modeling. This research project aims to fill the gap in accuracy between "standard" CFD and tests data by including a high fidelity reproduction of the gas domain and the use of advanced numerical models and tools introduced in the author's OEM in-house CFD code. In other words, this thesis describes a methodology by which virtual tests can be conducted on single stages and multistage centrifugal compressors in a similar fashion to a typical rig test that guarantee end users to operate machines with a confidence level not achievable before. Furthermore, the new "high fidelity" approach allowed understanding flow phenomena not fully captured before, increasing aerodynamicists capability and confidence in designing high efficiency and high reliable centrifugal compressor stages.
Resumo:
The main objective of this project is to experimentally demonstrate geometrical nonlinear phenomena due to large displacements during resonant vibration of composite materials and to explain the problem associated with fatigue prediction at resonant conditions. Three different composite blades to be tested were designed and manufactured, being their difference in the composite layup (i.e. unidirectional, cross-ply, and angle-ply layups). Manual envelope bagging technique is explained as applied to the actual manufacturing of the components; problems encountered and their solutions are detailed. Forced response tests of the first flexural, first torsional, and second flexural modes were performed by means of a uniquely contactless excitation system which induced vibration by using a pulsed airflow. Vibration intensity was acquired by means of Polytec LDV system. The first flexural mode is found to be completely linear irrespective of the vibration amplitude. The first torsional mode exhibits a general nonlinear softening behaviour which is interestingly coupled with a hardening behaviour for the unidirectional layup. The second flexural mode has a hardening nonlinear behaviour for either the unidirectional and angle-ply blade, whereas it is slightly softening for the cross-ply layup. By using the same equipment as that used for forced response analyses, free decay tests were performed at different airflow intensities. Discrete Fourier Trasform over the entire decay and Sliding DFT were computed so as to visualise the presence of nonlinear superharmonics in the decay signal and when they were damped out from the vibration over the decay time. Linear modes exhibit an exponential decay, while nonlinearities are associated with a dry-friction damping phenomenon which tends to increase with increasing amplitude. Damping ratio is derived from logarithmic decrement for the exponential branch of the decay.
Resumo:
Morbillivirus cell entry is controlled by hemagglutinin (H), an envelope-anchored viral glycoprotein determining interaction with multiple host cell surface receptors. Subsequent to virus-receptor attachment, H is thought to transduce a signal triggering the viral fusion glycoprotein, which in turn drives virus-cell fusion activity. Cell entry through the universal morbillivirus receptor CD150/SLAM was reported to depend on two nearby microdomains located within the hemagglutinin. Here, we provide evidence that three key residues in the virulent canine distemper virus A75/17 H protein (Y525, D526, and R529), clustering at the rim of a large recessed groove created by beta-propeller blades 4 and 5, control SLAM-binding activity without drastically modulating protein surface expression or SLAM-independent F triggering.
Resumo:
We describe a Bayesian method for estimating the number of essential genes in a genome, on the basis of data on viable mutants for which a single transposon was inserted after a random TA site in a genome,potentially disrupting a gene. The prior distribution for the number of essential genes was taken to be uniform. A Gibbs sampler was used to estimate the posterior distribution. The method is illustrated with simulated data. Further simulations were used to study the performance of the procedure.
Resumo:
The numerical solution of the incompressible Navier-Stokes equations offers an alternative to experimental analysis of fluid-structure interaction (FSI). We would save a lot of time and effort and help cut back on costs, if we are able to accurately model systems by these numerical solutions. These advantages are even more obvious when considering huge structures like bridges, high rise buildings or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the Kinematic Laplacian Equation (KLE) to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ordinary differential equations (ODE) time integration schemes, allowing us to tackle each problem as a separate module. The current algortihm for the KLE uses an unstructured quadrilateral mesh, formed by dividing each triangle of an unstructured triangular mesh into three quadrilaterals for spatial discretization. This research deals with determining a suitable measure of mesh quality based on the physics of the problems being tackled. This is followed by exploring methods to improve the quality of quadrilateral elements obtained from the triangles and thereby improving the overall mesh quality. A series of numerical experiments were designed and conducted for this purpose and the results obtained were tested on different geometries with varying degrees of mesh density.
Resumo:
The numerical solution of the incompressible Navier-Stokes Equations offers an effective alternative to the experimental analysis of Fluid-Structure interaction i.e. dynamical coupling between a fluid and a solid which otherwise is very complex, time consuming and very expensive. To have a method which can accurately model these types of mechanical systems by numerical solutions becomes a great option, since these advantages are even more obvious when considering huge structures like bridges, high rise buildings, or even wind turbine blades with diameters as large as 200 meters. The modeling of such processes, however, involves complex multiphysics problems along with complex geometries. This thesis focuses on a novel vorticity-velocity formulation called the KLE to solve the incompressible Navier-stokes equations for such FSI problems. This scheme allows for the implementation of robust adaptive ODE time integration schemes and thus allows us to tackle the various multiphysics problems as separate modules. The current algorithm for KLE employs a structured or unstructured mesh for spatial discretization and it allows the use of a self-adaptive or fixed time step ODE solver while dealing with unsteady problems. This research deals with the analysis of the effects of the Courant-Friedrichs-Lewy (CFL) condition for KLE when applied to unsteady Stoke’s problem. The objective is to conduct a numerical analysis for stability and, hence, for convergence. Our results confirmthat the time step ∆t is constrained by the CFL-like condition ∆t ≤ const. hα, where h denotes the variable that represents spatial discretization.
Resumo:
The accuracy of simulating the aerodynamics and structural properties of the blades is crucial in the wind-turbine technology. Hence the models used to implement these features need to be very precise and their level of detailing needs to be high. With the variety of blade designs being developed the models should be versatile enough to adapt to the changes required by every design. We are going to implement a combination of numerical models which are associated with the structural and the aerodynamic part of the simulation using the computational power of a parallel HPC cluster. The structural part models the heterogeneous internal structure of the beam based on a novel implementation of the Generalized Timoshenko Beam Model Technique.. Using this technique the 3-D structure of the blade is reduced into a 1-D beam which is asymptotically equivalent. This reduces the computational cost of the model without compromising its accuracy. This structural model interacts with the Flow model which is a modified version of the Blade Element Momentum Theory. The modified version of the BEM accounts for the large deflections of the blade and also considers the pre-defined structure of the blade. The coning, sweeping of the blade, tilt of the nacelle and the twist of the sections along the blade length are all computed by the model which aren’t considered in the classical BEM theory. Each of these two models provides feedback to the other and the interactive computations lead to more accurate outputs. We successfully implemented the computational models to analyze and simulate the structural and aerodynamic aspects of the blades. The interactive nature of these models and their ability to recompute data using the feedback from each other makes this code more efficient than the commercial codes available. In this thesis we start off with the verification of these models by testing it on the well-known benchmark blade for the NREL-5MW Reference Wind Turbine, an alternative fixed-speed stall-controlled blade design proposed by Delft University, and a novel alternative design that we proposed for a variable-speed stall-controlled turbine, which offers the potential for more uniform power control and improved annual energy production.. To optimize the power output of the stall-controlled blade we modify the existing designs and study their behavior using the aforementioned aero elastic model.
Resumo:
Foliar samples were harvested from two oaks, a beech, and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (δ13C, δ18O, and δD) were analyzed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the δ13C-values are in agreement with the transition from remobilized carbohydrates (juvenile period), to current photosynthates (mature phase). While the opponent seasonal trends of δ18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for δD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins) to 57 permil (oak blades) in δD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on δD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level.
Resumo:
The rotary tiller slot planter of the present invention comprises a subsoiler shank positioned to engage the soil and make a trench therein. A pair of rotary tiller blades are rotatably mounted on the opposite sides of the sub-soil shank in planes parallel thereto. The center-lines of the rotary tiller wheels are located behind the subsoil shank. Each of the wheels have a plurality of blades extending radially outwardly from the rotational axis thereof and terminating in outer radial ends which engage the soil slightly ahead of the subsoiler shank and adjacent the lateral edges of the trench. A seed tube shank is positioned behind the subsoiler shank and between the tiller wheels. The seed tube shank has a lower end positioned to extend below the soil surface. A seed tube is positioned behind the seed tube shank for depositing seed in the soil. The rotation of the blades on opposite sides of the subsoil shank causes the soil to be mechanically aggregated and aerated and helps prepare a seed bed for the seeds. Also, the rotating tiller blades chop the debris which may be along the trench and throw soil backwards so as to cover the planted seed. Shorter rotary blades on the tiller wheels are shaped to throw debris and the upper one-half inch of soil sideways away from the row.
Resumo:
This paper describes a practical activity, part of the renewable energy course where the students have to build their own complete wind generation system, including blades, PM-generator, power electronics and control. After connecting the system to the electric grid the system has been tested during real wind scenarios. The paper will describe the electric part of the work surface-mounted permanent magnet machine design criteria as well as the power electronics part for the power control and the grid connection. A Kalman filter is used for the voltage phase estimation and current commands obtained in order to control active and reactive power. The connection to the grid has been done and active and reactive power has been measured in the system.