984 resultados para Black globe temperature humidity index
Resumo:
We study the low frequency absorption cross section of spherically symmetric nonextremal d-dimensional black holes. In the presence of α′ corrections, this quantity must have an explicit dependence on the Hawking temperature of the form 1/TH. This property of the low frequency absorption cross section is shared by the D1-D5 system from type IIB superstring theory already at the classical level, without α′ corrections. We apply our formula to the simplest example, the classical d-dimensional Reissner-Nordstr¨om solution, checking that the obtained formula for the cross section has a smooth extremal limit. We also apply it for a d-dimensional Tangherlini-like solution with α′3 corrections.
Resumo:
The present study intended to analyze calliphorid attraction to traps painted in a variety of colors and the calliphorid constancy index in the Tingua Biological Reserve, Rio de Janeiro state, Brazil. The Diptera were collected monthly in the Reserve, between 2002 and 2005, totaling 24 samplings. Four traps containing sardines as bait were painted olive green, blood red, black, or white and exposed for 48 h at four equidistant points, 50 m from each other. To determine the calliphorid species constancy, the Bodenheirmer constancy index was used throughout the study. To analyze differences in the total abundance between species and in their color selection, an ANCOVA test with a significance level of 5 % and a Tukey post-test were used, considering the categories species and color as cofactors and climatic variables as co-variables (temperature, relative humidity and precipitation), since the samples were collected over two years. 10,444 insects were captured. Of these, 56 % belonged to the Calliphoridae family, totaling 13 species, with the most frequent species being Laneela nigripes (28.5 %), Hemilucilia semidiaphana (17 %), and Mesembrinella sp. (16.4 %). The other species had frequencies lower than 12 %. Nine species were considered constant, two accessories, and two accidental. The data indicated that the most frequent species presented significant differences between themselves concerning abundance over the captured months, however, the Tukey post-test indicated differences only between a few of them. The black trap presented the higher relative calliphorid frequency (27.34 %), followed by green (25 %), red (24.0 %), and white (23.7 %), although the species abundance in the different colored traps did not differ significantly among themselves. Therefore, there was no Calliphorid flies preference for any of the tested colors.
Resumo:
The blowfly species are important components in necrophagous communities of the Neotropics. Besides being involved in the degradation of animal organic matter, they may serve as vectors for pathogens and parasites, and also cause primary and secondary myiasis. The occurrence pattern of these species is well defined, yet it is still not very clear which of these environmental factors determine the structure of the assemblies. This paper was developed to evaluate the influence of mean temperature and relative humidity variation in the abundance and richness of blowflies in the Brazilian southernmost state, Rio Grande do Sul, where temperature variation is well marked throughout the year. To evaluate this objective, WOT (Wind Oriented Trap) were installed with beef liver as bait in three environments for 10 consecutive days in each month between July 2003 and June 2004. A total of 13,860 flies were collected distributed among 16 species with a higher frequency of Lucilia eximia (Wiedemann, 1819) and Chrysomya albiceps (Wiedemann, 1819). The mean temperature and relative humidity influence the richness of blowflies, with greater richness and abundance in late spring and early summer, whereas abundance was only influenced by temperature. Each species responded differently with respect to these variables, where L. eximia is not influenced by any of the two abiotic factors, despite the high abundance presented. This paper presents the results of the sensitivity for the presence or absence of species of Calliphoridae and on the variation of the abundance of these species under regime temperature changes and relative humidity with implications for public health and animal management.
Resumo:
Several biological parameters related to the Triatoma mexicana life-cycle were evaluated in this study. Three cohorts were maintained under different combinations of temperature and relative humidity (RH): 25ºC/50% RH; 25ºC/75% RH; and 30ºC/75% RH. Observed hatching rates varied from 49-57.5% whereas the average time of hatching varied from 19.5-22.7 days. In the three cohorts studied, the mean time-lapse between presentation of the blood meal and the beginning of feeding was less than 5 min in all instars; the mean feeding time was longer than 10 min in all the instars; the post-feed defecation delay was over 10 min in all the instars. Less than 50% of nymphs in each cohort completed the cycle and the average time from 1st instar nymph to adult was more than 255 days for the three cohorts. The number of blood meals before molt at each nymphal instar varied from 1-9. Our results appear to indicate a lack of influence of temperature and RH on the biological parameters of T. mexicana that were studied, which could reflect the adaptation capacity of this species. We also conclude that T. mexicana can not be considered an effective transmitter of Trypanosoma cruzi to human populations in areas where this species is currently present.
Resumo:
In short space of time increase in temperature and rainfall can affect vector populations and, consequently, the diseases for them transmitted. The present study analyzed the effect of small temperature and humidity variations on the fecundity, fertility and survival of Aedes aegypti. These parameters were analyzed using individual females at temperatures ranging from 23 to 27 °C (mean 25 °C); 28 to 32 °C (mean 30 °C) and 33 to 37 °C (mean 35 ºC) associated to 60±8% and 80±6% relative humidity. Females responded to an increase in temperature by reducing egg production, oviposition time and changing oviposition patterns. At 25 ºC and 80% relative humidity, females survived two-fold more and produced 40% more eggs when compared to those kept at 35 ºC and 80% relative humidity. However, in 45% of females kept at 35 ºC and 60% relative humidity oviposition was inhibited and only 15% females laid more than 100 eggs, suggesting that the intensity of the temperature effect was influenced by humidity. Gradual reductions in egg fertility at 60% relative humidity were observed with the increase in temperature, although such effect was not found in the 80% relative humidity at 25 º C and 30 º C. These results suggest that the reduction in population densities recorded in tropical areas during seasons when temperatures reach over 35 ºC is likely to be strongly influenced by temperature and humidity, with a negative effect on several aspects of mosquito biology.
Resumo:
During postharvest, lettuce is usually exposed to adverse conditions (e.g. low relative humidity) that reduce the vegetable quality. In order to evaluate its shelf life, a great number of quality attributes must be analyzed, which requires careful experimental design, and it is time consuming. In this study, the modified Global Stability Index method was applied to estimate the quality of butter lettuce at low relative humidity during storage discriminating three lettuce zones (internal, middle, and external). The results indicated that the most relevant attributes were: the external zone - relative water content, water content , ascorbic acid, and total mesophilic counts; middle zone - relative water content, water content, total chlorophyll, and ascorbic acid; internal zone - relative water content, bound water, water content, and total mesophilic counts. A mathematical model that takes into account the Global Stability Index and overall visual quality for each lettuce zone was proposed. Moreover, the Weibull distribution was applied to estimate the maximum vegetable storage time which was 5, 4, and 3 days for the internal, middle, and external zone, respectively. When analyzing the effect of storage time for each lettuce zone, all the indices evaluated in the external zone of lettuce presented significant differences (p < 0.05). For both, internal and middle zones, the attributes presented significant differences (p < 0.05), except for water content and total chlorophyll.
Resumo:
Under subtropical and tropical environments soybean seed (Glycine max (L.) Merrill) are harvested early to avoid deterioration from weathering. Careful after-harvest drying is required and is an important step in maintaining the physiological quality of the seed. Soybean seed should be harvested when the moisture content is in a range of 16-20%. Traditional drying utilizes a high temperature air stream passed through the seed mass without dehumidification. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the seed. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is passed through the seed mass at the same environmental temperature. Two studies were conducted to evaluate the performance of HPT for dry soybean seed. In the first study the seeds were dried from 17.5 to 11.1% in 2 hours and 29 minutes and in the second sudy the seeds were dried from 22.6 to 11.9% in 16 hours and 32 minutes. This drying process caused no reduction in seed quality as measured by the standard germination, tetrazolium-viability, accelerated aging and seedling vigor classification tests. The only parameter that indicated a slight seed quality reduction was tetrazolium vigor in the second study. It was concluded that the HPT system is a promising technology for drying soybean seed when efficiency and maintenance of physiological quality are desired.
Resumo:
The moisture content of peanut kernel (Arachis hypogaea L.) at digging ranges from 30 to 50% on a wet basis (w.b.). The seed moisture content must be reduced to 10.5% or below before seeds can be graded and marketed. After digging, peanuts are cured on a window sill for two to five days then mechanically separated from the vine. Heated air is used to further dry the peanuts from approximately 18 to 10% moisture content w.b. Drying is required to maintain peanut seed and grain quality. Traditional dryers pass a high temperature and high humidity air stream through the seed mass. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the kernels. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is heated and passed through the seed. A study was conducted to evaluate the performance of the HPT system in drying peanut seed. The seeds inside the shells were dried from 17.4 to 7.3% in 14 hours and 11 minutes, with a rate of moisture removal of 0.71% mc per hour. This drying process caused no reduction in seed quality as measured by the standard germination, accelerated ageing and field emergence tests. It was concluded that the HPT system is a promising technology for drying peanut seed when efficiency and maintenance of physiological quality are desired.
Resumo:
Numerous low - pressure systems form in the Arabian Sea and Bay of Bengal. These low-pressure systems are highly useful in bringing the rainfall over the Indian sub continent. The developments of these systems are accompanied by the reduction in air temperature and an increase in atmospheric humidity. The radio refractivity, which is a function of the atmospheric pressure, temperature and humidity, also changes following the development of these systems. Variation of radio refractive index and its vertical gradient are analysed for many low pressure systems formed over the Arabian Sea and Bay of Bengal. It is found that the atmosphere becomes super refractive associated with the formation of these systems, caused by the increase in humidity and decrease in temperature. The maximum gradient is observed near the surface layers, especially in the lowest 1 km. Super refraction leads to increased radar detection range and extension of radio horizon
Resumo:
A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with near-complete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.
The dependence of clear-sky outgoing longwave radiation on surface temperature and relative humidity
Resumo:
A simulation of the earth's clear-sky long-wave radiation budget is used to examine the dependence of clear-sky outgoing long-wave radiation (OLR) on surface temperature and relative humidity. the simulation uses the European Centre for Medium-Range Weather Forecasts global reanalysed fields to calculate clear-sky OLR over the period from January 1979 to December 1993, thus allowing the seasonal and interannual time-scales to be resolved. the clear-sky OLR is shown to be primarily dependent on temperature changes at high latitudes and on changes in relative humidity at lower latitudes. Regions exhibiting a ‘super-greenhouse’ effect are identified and are explained by considering the changes in the convective regime associated with the Hadley circulation over the seasonal cycle, and with the Walker circulation over the interannual time-scale. the sensitivity of clear-sky OLR to changes in relative humidity diminishes with increasing relative humidity. This is explained by the increasing saturation of the water-vapour absorption bands with increased moisture. By allowing the relative humidity to vary in specified vertical slabs of the troposphere over an interannual time-scale it is shown that changes in humidity in the mid troposphere (400 to 700 hPa) are of most importance in explaining clear-sky OLR variations. Relative humidity variations do not appear to affect the positive thermodynamic water-vapour feedback significantly in response to surface temperature changes.
Resumo:
Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53′N, 36°29.55′E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18–14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1–14.5 kyr BP), indicated by δ18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative δ13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5–12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative δ13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7–8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5–5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.
Resumo:
The observation-error covariance matrix used in data assimilation contains contributions from instrument errors, representativity errors and errors introduced by the approximated observation operator. Forward model errors arise when the observation operator does not correctly model the observations or when observations can resolve spatial scales that the model cannot. Previous work to estimate the observation-error covariance matrix for particular observing instruments has shown that it contains signifcant correlations. In particular, correlations for humidity data are more significant than those for temperature. However it is not known what proportion of these correlations can be attributed to the representativity errors. In this article we apply an existing method for calculating representativity error, previously applied to an idealised system, to NWP data. We calculate horizontal errors of representativity for temperature and humidity using data from the Met Office high-resolution UK variable resolution model. Our results show that errors of representativity are correlated and more significant for specific humidity than temperature. We also find that representativity error varies with height. This suggests that the assimilation scheme may be improved if these errors are explicitly included in a data assimilation scheme. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.