907 resultados para Bio-responsive drug delivery
Resumo:
In the present work, a biosensor was built with smart material based on polymer brushes. The biosensor demonstrated a pH-sensitive on-off property, and it was further used to control or modulate the electrochemical responses of the biosensor. This property could be used to realize pH-controlled electrochemical reaction of hydrogen peroxide and HRP immobilized on polymer brushes. The composite film also showed excellent amperometric i-t response toward hydrogen peroxide in the concentration range of 0-13 μM. In future, this platform might be used for self-regulating targeted diagnostic, drug delivery and biofuel cell based on controllable bioelectrocatalysis. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Topical corticosteroids, e.g., dexamethasone acetate (DMA), are extensively used to treat cutaneous inflammatory disorders even though their use is correlated with potential local and systemic side effects. The objective of this study was to develop and test the topical delivery of DMA-loaded surfactant based systems in vitro; these studies could guarantee a suitable delivery and therapeutic efficacy, as well as minimize DMA's side effects. A phase diagram was constructed using polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol as the surfactant (S), isopropyl myristate as the oil phase (O) and water (W). The systems were characterized using polarization light microscopy (PLM), as well as rheological and small angle X-ray scattering (SAXS) measurements. Depending on the concentration of the constituents, it was possible to obtain microemulsions (MEs) and liquid crystalline mesophases (lamellar and hexagonal). These types of arrangement were verified using PLM measurements. The SAXS results revealed that increasing the W/S ratio led to ME, as well as lamellar (LAM) and hexagonal (HEX) arrangements. The MEs displayed typical Newtonian behavior while the LAM and HEX phases exhibited pseudoplasticity and plasticity, respectively. The MEs displayed excellent drug solubilization that was approximately 10-fold higher than was observed with the individual components. The in vitro cutaneous permeation studies using pig ear skin and analysis of the mechanical parameters (hardness, compressibility, cohesiveness and adhesiveness) were carried out with a HEX phase and O/W emulsion. The HEX phase achieved better drug permeation and retention in the skin while its mechanical properties were suitable for skin administration. PPG-5-CETETH-20-based systems may be a promising platform delivering DMA and other topical corticosteroids through the skin.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Topical photodynamic therapy (PDT) has been applied to almost all types of nonmelanoma skin cancer and numerous superficial benign skin disorders. Strategies to improve the accumulation of photosensitizer in the skin have been studied in recent years. Although the hydrophilic phthalocyanine zinc compound, zinc phthalocyanine tetrasulfonate (ZnPcSO4) has shown high photodynamic efficiency and reduced phototoxic side effects in the treatment of brain tumors and eye conditions, its use in topical skin treatment is currently limited by its poor skin penetration. In this study, nanodispersions of monoolein (MO)-based liquid crystalline phases were studied for their ability to increase ZnPcSO4 uptake by the skin. Lamellar, hexagonal and cubic crystalline phases were prepared and identified by polarizing light microscopy, and the nanodispersions were analyzed by dynamic light scattering. In vitro skin penetration studies were performed using a Franz's cell apparatus, and the skin uptake was evaluated in vivo in hairless mice. Aqueous dispersions of cubic and hexagonal phases showed particles of nanometer size, approximately 224 +/- 10 nm and 188 +/- 10 nm, respectively. In vitro skin retention experiments revealed higher fluorescence from the ZnPcSO4 in deeper skin layers when this photosensitizer was loaded in the hexagonal nanodispersion system when compared to both the cubic phase nanoparticles and the bulk crystalline phases (lamellar, cubic and hexagonal). The hexagonal nanodispersion showed a similar penetration behavior in animal tests. These results are important findings, suggesting the development of MO liquid crystal nanodispersions as potential delivery systems to enhance the efficacy of topical PDT.
Resumo:
With the purpose of evaluating the behavior of different polymers employed as binders in small-diameter pellets for oral administration, we prepared formulations containing paracetamol and one of the following polymers: PVP, PEG 1500, hydroxypropylmethylcellulose and methylcellulose, and we evaluated their different binding properties. The pellets were obtained by the extrusion/spheronization process and were subsequently subjected to fluid bed drying. In order to assess drug delivery, the United States Pharmacopeia (USP) apparatus 3 (Bio-Dis) was employed, in conjunction with the method described by the same pharmacopeia for the dissolution of paracetamol tablets (apparatus 1). The pellets were also evaluated for granulometry, friability, true density and drug content. The results indicate that the different binders used are capable of affecting production in different ways, and some of the physicochemical characteristics of the pellets, as well as the dissolution test, revealed that the formulations acted like immediate-release products. The pellets obtained presented favorable release characteristics for orally disintegrating tablets. USP apparatus 3 seems to be more adequate for discriminating among formulations than the basket method.