919 resultados para Best algebraic approximation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a distributed 2-approximation algorithm for the minimum vertex cover problem. The algorithm is deterministic, and it runs in (Δ + 1)2 synchronous communication rounds, where Δ is the maximum degree of the graph. For Δ = 3, we give a 2-approximation algorithm also for the weighted version of the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a local algorithm (constant-time distributed algorithm) for finding a 3-approximate vertex cover in bounded-degree graphs. The algorithm is deterministic, and no auxiliary information besides port numbering is required. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a distributed 2-approximation algorithm for the minimum vertex cover problem. The algorithm is deterministic, and it runs in (Δ + 1)2 synchronous communication rounds, where Δ is the maximum degree of the graph. For Δ = 3, we give a 2-approximation algorithm also for the weighted version of the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a max-min LP, the objective is to maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0. In a min-max LP, the objective is to minimise ρ subject to Ax ≤ ρ1, Cx ≥ 1, and x ≥ 0. The matrices A and C are nonnegative and sparse: each row ai of A has at most ΔI positive elements, and each row ck of C has at most ΔK positive elements. We study the approximability of max-min LPs and min-max LPs in a distributed setting; in particular, we focus on local algorithms (constant-time distributed algorithms). We show that for any ΔI ≥ 2, ΔK ≥ 2, and ε > 0 there exists a local algorithm that achieves the approximation ratio ΔI (1 − 1/ΔK) + ε. We also show that this result is the best possible: no local algorithm can achieve the approximation ratio ΔI (1 − 1/ΔK) for any ΔI ≥ 2 and ΔK ≥ 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csiszar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner bases method to compute an implicit representation of minimum KL-divergence models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an efficient and parameter-free scoring criterion, the factorized conditional log-likelihood (ˆfCLL), for learning Bayesian network classifiers. The proposed score is an approximation of the conditional log-likelihood criterion. The approximation is devised in order to guarantee decomposability over the network structure, as well as efficient estimation of the optimal parameters, achieving the same time and space complexity as the traditional log-likelihood scoring criterion. The resulting criterion has an information-theoretic interpretation based on interaction information, which exhibits its discriminative nature. To evaluate the performance of the proposed criterion, we present an empirical comparison with state-of-the-art classifiers. Results on a large suite of benchmark data sets from the UCI repository show that ˆfCLL-trained classifiers achieve at least as good accuracy as the best compared classifiers, using significantly less computational resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground-state properties of the two-dimensional Hubbard model with point-defect disorder are investigated numerically in the Hartree-Fock approximation. The phase diagram in the p(point defect concentration)-delta(deviation from half filling) plane exhibits antiferromagnetic, spin-density-wave, paramagnetic, and spin-glass-like phases. The disorder stabilizes the antiferromagnetic phase relative to the spin-density-wave phase. The presence of U strongly enhances the localization in the antiferromagnetic phase. The spin-density-wave and spin-glass-like phases are weakly localized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider three dimensional finite element computations of thermoelastic damping ratios of arbitrary bodies using Zener's approach. In our small-damping formulation, unlike existing fully coupled formulations, the calculation is split into three smaller parts. Of these, the first sub-calculation involves routine undamped modal analysis using ANSYS. The second sub-calculation takes the mode shape, and solves on the same mesh a periodic heat conduction problem. Finally, the damping coefficient is a volume integral, evaluated elementwise. In the only other decoupled three dimensional computation of thermoelastic damping reported in the literature, the heat conduction problem is solved much less efficiently, using a modal expansion. We provide numerical examples using some beam-like geometries, for which Zener's and similar formulas are valid. Among these we examine tapered beams, including the limiting case of a sharp tip. The latter's higher-mode damping ratios dramatically exceed those of a comparable uniform beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop in this article the first actor-critic reinforcement learning algorithm with function approximation for a problem of control under multiple inequality constraints. We consider the infinite horizon discounted cost framework in which both the objective and the constraint functions are suitable expected policy-dependent discounted sums of certain sample path functions. We apply the Lagrange multiplier method to handle the inequality constraints. Our algorithm makes use of multi-timescale stochastic approximation and incorporates a temporal difference (TD) critic and an actor that makes a gradient search in the space of policy parameters using efficient simultaneous perturbation stochastic approximation (SPSA) gradient estimates. We prove the asymptotic almost sure convergence of our algorithm to a locally optimal policy. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two timescale stochastic approximation scheme which uses coupled iterations is used for simulation-based parametric optimization as an alternative to traditional "infinitesimal perturbation analysis" schemes, It avoids the aggregation of data present in many other schemes. Its convergence is analyzed, and a queueing example is presented.