996 resultados para Beata Ridge
Resumo:
Compositions and abundances of calcareous nannofossil taxa have been determined in a ca 170 kyrs long time interval across the Paleocene/Eocene boundary at 1-cm to 10-cm resolution from two ODP Sites (1262, 1263) drilled along the flank of the Walvis Ridge in the South Atlantic. The results are compared to published data from ODP Site 690 in the Weddell Sea. The assemblages underwent rapid evolution over a 74 kyrs period, indicating stressed, unstable and/or extreme photic zone environments during the PETM hyperthermal. This rapid evolution, which created 5 distinct stratigraphic horizons, is consistent with the restricted brief occurrences of malformed and/or weakly calcified morphotypes. The production of these aberrant morphotypes is possibly caused by major global scale changes in carbon cycling in the ocean-atmosphere system, affecting also photic zone environments. No marked paleoecologically induced changes are observed in abundances of the genera Discoaster, Fasciculithus and Sphenolithus at the Walvis Ridge sites. Surprisingly, there is no significant correlation in abundance between these three genera, presumed to have had a similar paleoecological preference for warm and oligotrophic conditions.
Resumo:
Within a dipping sequence of middle Cretaceous to Eocene sediments on Broken Ridge, opal-A, opal-CT, and quartz occur as minor constituents in carbonate and ash-rich sediments. Biogenic opal-A is mainly derived from diatoms and radiolarians. Opal-A and almost all siliceous microfossils disappear within a narrow (<20-m-thick) transition zone below which authigenic opal-CT and quartz are present. These latter silica polymorphs occur together within a 750-m-thick interval, but the ratio of quartz/opal-CT increases with increasing age and depth within the pre-rift sediment sequence. The boundary between opal-A- and opal-CT-bearing sediments is also a physical boundary at which density, P-wave velocity, and acoustic impedance change. This physical transition is probably caused by infilling of pore space by opal-CT lepispheres.
Resumo:
The precision of late Paleocene to middle Eocene nannofossil datums is investigated by means of quantitative methods and correlated to the magnetic polarity stratigraphy, using sequences from the Northwest Pacific, Southeast Atlantic and Italy. It is the rule rather than the exception to find tails of very reduced abundances prior to, or after, a range of consistent and higher abundances. The absolutely first or final occurrence of a species, therefore, seldom provides a synchronous datum when material from different geographic areas are compared. On the other band, synchroneity is often confirmed when the initial sharp rise or the final sharp decline in abundance is used as datum level. The use of datums not employed in the two principal existing nannofossil zonal schemes can substantially improve the biostratigraphic resolution. Two established zonal markers show abundance patterns making them unsuitable as datums: the first occurrences of Ellipsolithus macellus (base NP4, diachronous) and Tribrachiatus nunnii (base NP10 and Paleocene/Eocene boundary, too rare and too short range in open ocean sections). The first occurrence of either Fasciculithus spp. or Sphenolithus spp. is a better marker near the base of NP4. The first occurrence of Discoaster diastypus at 56.6 Ma represents a suitable replacement for recognition of the Paleocene/Eocene boundary.
Resumo:
An understanding of sediment redox conditions across the Paleocene-Eocene thermal maximum (PETM) (?55 Ma) is essential for evaluating changes in processes that control deep-sea oxygenation, as well as identifying the mechanisms responsible for driving the benthic foraminifera extinction. Sites cored on the flanks of Walvis Ridge (Ocean Drilling Program Leg 208, Sites 1262, 1266, and 1263) allow us to examine changes in bottom and pore water redox conditions across a ~2 km depth transect of deep-sea sediments of PETM age recovered from the South Atlantic. Here we present measurements of the concentrations of redox-sensitive trace metals manganese (Mn) and uranium (U) in bulk sediment as proxies for redox chemistry at the sediment-water interface and below. All three Walvis Ridge sites exhibit bulk Mn enrichment factors (EF) ranging between 4 and 12 prior to the warming, values at crustal averages (Mn EF = 1) during the warming interval, and a return to pre-event values during the recovery period. U enrichment factors across the PETM remains at crustal averages (U EF = 1) at Site 1262 (deep) and Site 1266 (intermediate depth). U enrichment factors at Site 1263 (shallow) peaked at 5 immediately prior to the PETM and dropped to values near crustal averages during and after the event. All sites were lower in dissolved oxygen content during the PETM. Before and after the PETM, the deep and intermediate sites were oxygenated, while the shallow site was suboxic. Our geochemical results indicate that oxygen concentrations did indeed drop during the PETM but not sufficiently to cause massive extinction of benthic foraminifera.