985 resultados para Bayesian techniques


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Access to cardiac services is essential for appropriate implementation of evidence-based therapies to improve outcomes. The Cardiac Accessibility and Remoteness Index for Australia (Cardiac ARIA) aimed to derive an objective, geographic measure reflecting access to cardiac services. Methods: An expert panel defined an evidence-based clinical pathway. Using Geographic Information Systems (GIS), a numeric/alpha index was developed at two points along the continuum of care. The acute category (numeric) measured the time from the emergency call to arrival at an appropriate medical facility via road ambulance. The aftercare category (alpha) measured access to four basic services (family doctor, pharmacy, cardiac rehabilitation, and pathology services) when a patient returned to their community. Results: The numeric index ranged from 1 (access to principle referral center with cardiac catheterization service ≤ 1 hour) to 8 (no ambulance service, > 3 hours to medical facility, air transport required). The alphabetic index ranged from A (all 4 services available within 1 hour drive-time) to E (no services available within 1 hour). 13.9 million (71%) Australians resided within Cardiac ARIA 1A locations (hospital with cardiac catheterization laboratory and all aftercare within 1 hour). Those outside Cardiac 1A were over-represented by people aged over 65 years (32%) and Indigenous people (60%). Conclusion: The Cardiac ARIA index demonstrated substantial inequity in access to cardiac services in Australia. This methodology can be used to inform cardiology health service planning and the methodology could be applied to other common disease states within other regions of the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate reliability prediction for large-scale, long lived engineering is a crucial foundation for effective asset risk management and optimal maintenance decision making. However, a lack of failure data for assets that fail infrequently, and changing operational conditions over long periods of time, make accurate reliability prediction for such assets very challenging. To address this issue, we present a Bayesian-Marko best approach to reliability prediction using prior knowledge and condition monitoring data. In this approach, the Bayesian theory is used to incorporate prior information about failure probabilities and current information about asset health to make statistical inferences, while Markov chains are used to update and predict the health of assets based on condition monitoring data. The prior information can be supplied by domain experts, extracted from previous comparable cases or derived from basic engineering principles. Our approach differs from existing hybrid Bayesian models which are normally used to update the parameter estimation of a given distribution such as the Weibull-Bayesian distribution or the transition probabilities of a Markov chain. Instead, our new approach can be used to update predictions of failure probabilities when failure data are sparse or nonexistent, as is often the case for large-scale long-lived engineering assets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models (SSM). PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries Numpy and Scipy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimised and parallelised Fortran routines. These Fortran routines heavily utilise Basic Linear Algebra (BLAS) and Linear Algebra Package (LAPACK) functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates an experimental study that examines the accuracy of various information retrieval techniques for Web service discovery. The main goal of this research is to evaluate algorithms for semantic web service discovery. The evaluation is comprehensively benchmarked using more than 1,700 real-world WSDL documents from INEX 2010 Web Service Discovery Track dataset. For automatic search, we successfully use Latent Semantic Analysis and BM25 to perform Web service discovery. Moreover, we provide linking analysis which automatically links possible atomic Web services to meet the complex requirements of users. Our fusion engine recommends a final result to users. Our experiments show that linking analysis can improve the overall performance of Web service discovery. We also find that keyword-based search can quickly return results but it has limitation of understanding users’ goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we apply a simulation based approach for estimating transmission rates of nosocomial pathogens. In particular, the objective is to infer the transmission rate between colonised health-care practitioners and uncolonised patients (and vice versa) solely from routinely collected incidence data. The method, using approximate Bayesian computation, is substantially less computer intensive and easier to implement than likelihood-based approaches we refer to here. We find through replacing the likelihood with a comparison of an efficient summary statistic between observed and simulated data that little is lost in the precision of estimated transmission rates. Furthermore, we investigate the impact of incorporating uncertainty in previously fixed parameters on the precision of the estimated transmission rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EMR (Electronic Medical Record) is an emerging technology that is highly-blended between non-IT and IT area. One methodology is to link the non-IT and IT area is to construct databases. Nowadays, it supports before and after-treatment for patients and should satisfy all stakeholders such as practitioners, nurses, researchers, administrators and financial departments and so on. In accordance with the database maintenance, DAS (Data as Service) model is one solution for outsourcing. However, there are some scalability and strategy issues when we need to plan to use DAS model properly. We constructed three kinds of databases such as plan-text, MS built-in encryption which is in-house model and custom AES (Advanced Encryption Standard) - DAS model scaling from 5K to 2560K records. To perform custom AES-DAS better, we also devised Bucket Index using Bloom Filter. The simulation showed the response times arithmetically increased in the beginning but after a certain threshold, exponentially increased in the end. In conclusion, if the database model is close to in-house model, then vendor technology is a good way to perform and get query response times in a consistent manner. If the model is DAS model, it is easy to outsource the database, however, some techniques like Bucket Index enhances its utilization. To get faster query response times, designing database such as consideration of the field type is also important. This study suggests cloud computing would be a next DAS model to satisfy the scalability and the security issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic Health Record (EHR) retrieval processes are complex demanding Information Technology (IT) resources exponentially in particular memory usage. Database-as-a-service (DAS) model approach is proposed to meet the scalability factor of EHR retrieval processes. A simulation study using ranged of EHR records with DAS model was presented. The bucket-indexing model incorporated partitioning fields and bloom filters in a Singleton design pattern were used to implement custom database encryption system. It effectively provided faster responses in the range query compared to different types of queries used such as aggregation queries among the DAS, built-in encryption and the plain-text DBMS. The study also presented with constraints around the approach should consider for other practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the medical and healthcare arena, patients‟ data is not just their own personal history but also a valuable large dataset for finding solutions for diseases. While electronic medical records are becoming popular and are used in healthcare work places like hospitals, as well as insurance companies, and by major stakeholders such as physicians and their patients, the accessibility of such information should be dealt with in a way that preserves privacy and security. Thus, finding the best way to keep the data secure has become an important issue in the area of database security. Sensitive medical data should be encrypted in databases. There are many encryption/ decryption techniques and algorithms with regard to preserving privacy and security. Currently their performance is an important factor while the medical data is being managed in databases. Another important factor is that the stakeholders should decide more cost-effective ways to reduce the total cost of ownership. As an alternative, DAS (Data as Service) is a popular outsourcing model to satisfy the cost-effectiveness but it takes a consideration that the encryption/ decryption modules needs to be handled by trustworthy stakeholders. This research project is focusing on the query response times in a DAS model (AES-DAS) and analyses the comparison between the outsourcing model and the in-house model which incorporates Microsoft built-in encryption scheme in a SQL Server. This research project includes building a prototype of medical database schemas. There are 2 types of simulations to carry out the project. The first stage includes 6 databases in order to carry out simulations to measure the performance between plain-text, Microsoft built-in encryption and AES-DAS (Data as Service). Particularly, the AES-DAS incorporates implementations of symmetric key encryption such as AES (Advanced Encryption Standard) and a Bucket indexing processor using Bloom filter. The results are categorised such as character type, numeric type, range queries, range queries using Bucket Index and aggregate queries. The second stage takes the scalability test from 5K to 2560K records. The main result of these simulations is that particularly as an outsourcing model, AES-DAS using the Bucket index shows around 3.32 times faster than a normal AES-DAS under the 70 partitions and 10K record-sized databases. Retrieving Numeric typed data takes shorter time than Character typed data in AES-DAS. The aggregation query response time in AES-DAS is not as consistent as that in MS built-in encryption scheme. The scalability test shows that the DBMS reaches in a certain threshold; the query response time becomes rapidly slower. However, there is more to investigate in order to bring about other outcomes and to construct a secured EMR (Electronic Medical Record) more efficiently from these simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives To evaluate differences among patients with different clinical features of ALS, we used our Bayesian method of motor unit number estimation (MUNE). Methods We performed serial MUNE studies on 42 subjects who fulfilled the diagnostic criteria for ALS during the course of their illness. Subjects were classified into three subgroups according to whether they had typical ALS (with upper and lower motor neurone signs) or had predominantly upper motor neurone weakness with only minor LMN signs, or predominantly lower motor neurone weakness with only minor UMN signs. In all subjects we calculated the half life of MUs, defined as the expected time for the number of MUs to halve, in one or more of the abductor digiti minimi (ADM), abductor pollicis brevis (APB) and extensor digitorum brevis (EDB) muscles. Results The mean half life of MUs was less in subjects who had typical ALS with both upper and lower motor neurone signs than in those with predominantly upper motor neurone weakness or predominantly lower motor neurone weakness. In 18 subjects we analysed the estimated size of the MUs and demonstrated the appearance of large MUs in subjects with upper or lower motor neurone predominant weakness. We found that the appearance of large MUs was correlated with the half life of MUs. Conclusions Patients with different clinical features of ALS have different rates of loss and different sizes of MUs. Significance: These findings could indicate differences in disease pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of bridge deterioration models to predict future condition provides significant advantages in improving the effectiveness of maintenance decisions. This paper proposes a novel model using Dynamic Bayesian Networks (DBNs) for predicting the condition of bridge elements. The proposed model improves prediction results by being able to handle, deterioration dependencies among different bridge elements, the lack of full inspection histories, and joint considerations of both maintenance actions and environmental effects. With Bayesian updating capability, different types of data and information can be utilised as inputs. Expert knowledge can be used to deal with insufficient data as a starting point. The proposed model established a flexible basis for bridge systems deterioration modelling so that other models and Bayesian approaches can be further developed in one platform. A steel bridge main girder was chosen to validate the proposed model.