933 resultados para Bayesian mixture model
Resumo:
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric ICC treats both correct and incorrect answers symmetrically, which results in a logical contradiction in ordering examinees on the ability scale. A data set corresponding to a mathematical test applied in Peruvian public schools is analyzed, where comparisons with other parametric IRT models also are conducted. Several model comparison criteria are discussed and implemented. The main conclusion is that the LPE and RLPE IRT models are easy to implement and seem to provide the best fit to the data set considered.
Resumo:
We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.
Resumo:
Economias emergentes sofrem importantes restrições de crédito quando comparadas com economias desenvolvidas, entretanto, modelos estocásticos de equilíbrio geral (DSGE) desenhados para economias emergentes ainda precisam avançar nessa discussão. Nós propomos um modelo DSGE que pretende representar uma economia emergente com setor bancário baseado em Gerali et al. (2010). Nossa contribuição é considerar uma parcela da renda esperada como colateral para empréstimos das famílias. Nós estimamos o modelo proposto para o Brasil utilizando estimação Bayesiana e encontramos que economias que sofrem restrição de colateral por parte das famílias tendem a sentir o impacto de choques monetários mais rapidamente devido a exposição do setor bancário a mudanças no salário esperado.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We use a time-dependent dynamical hydrodynamic model to study a collapse in a degenerate fermion-fermion mixture ( DFFM) of different atoms. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances, there cannot be a collapse for repulsive interspecies fermion fermion interaction. However, there can be a collapse for a sufficiently attractive interspecies fermion-fermion interaction in a DFFM of different atoms. Using a variational analysis and numerical solution of the hydrodynamic model, we study different aspects of collapse in such a DFFM initiated by a jump in the interspecies fermion-fermion interaction ( scattering length) to a large negative ( attractive) value using a Feshbach resonance. Suggestion for experiments of collapse in a DFFM of distinct atoms is made.
Resumo:
Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.
Resumo:
Practical Bayesian inference depends upon detailed examination of posterior distribution. When the prior and likelihood are conjugate, this is easily carried out; however, in general, one must resort to numerical approximation. In this paper, our aim is to solve, using MAPLE, the Bayesian paradigm, for a very special data collecting procedure, known as the randomized-response technique. This allows researchers to obtain sensitive information while guaranteeing privacy to respondents. This approach intends to reduce false responses on sensitive questions. Exact methods and approximations will be compared from the accuracy point of view as well as for the computational effort.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose alternative approaches to analyze residuals in binary regression models based on random effect components. Our preferred model does not depend upon any tuning parameter, being completely automatic. Although the focus is mainly on accommodation of outliers, the proposed methodology is also able to detect them. Our approach consists of evaluating the posterior distribution of random effects included in the linear predictor. The evaluation of the posterior distributions of interest involves cumbersome integration, which is easily dealt with through stochastic simulation methods. We also discuss different specifications of prior distributions for the random effects. The potential of these strategies is compared in a real data set. The main finding is that the inclusion of extra variability accommodates the outliers, improving the adjustment of the model substantially, besides correctly indicating the possible outliers.
Resumo:
P>In this study, Bayesian analysis under a threshold animal model was used to estimate genetic correlations between morphological traits (body structure, finishing precocity and muscling) in Nelore cattle evaluated at weaning and yearling. Visual scores obtained from 7651 Nelore cattle at weaning and from 4155 animals at yearling, belonging to the Brazilian Nelore Program, were used. Genetic parameters for the morphological traits were estimated by two-trait Bayesian analysis under a threshold animal model. The genetic correlations between the morphological traits evaluated at two ages of the animal (weaning and yearling) were positive and high for body structure (0.91), finishing precocity (0.96) and muscling (0.94). These results indicate that the traits are mainly determined by the same set of genes of additive action and that direct selection at weaning will also result in genetic progress for the same traits at yearling. Thus, selection of the best genotypes during only one phase of life of the animal is suggested. However, genetic differences between morphological traits were better detected during the growth phase to yearling. Direct selection for body structure, finishing precocity and muscling at only one age, preferentially at yearling, is recommended as genetic differences between traits can be detected at this age.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we propose a bivariate distribution for the bivariate survival times based on Farlie-Gumbel-Morgenstern copula to model the dependence on a bivariate survival data. The proposed model allows for the presence of censored data and covariates. For inferential purpose a Bayesian approach via Markov Chain Monte Carlo (MCMC) is considered. Further, some discussions on the model selection criteria are given. In order to examine outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. The newly developed procedures are illustrated via a simulation study and a real dataset.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.
Resumo:
Many recent survival studies propose modeling data with a cure fraction, i.e., data in which part of the population is not susceptible to the event of interest. This event may occur more than once for the same individual (recurrent event). We then have a scenario of recurrent event data in the presence of a cure fraction, which may appear in various areas such as oncology, finance, industries, among others. This paper proposes a multiple time scale survival model to analyze recurrent events using a cure fraction. The objective is analyzing the efficiency of certain interventions so that the studied event will not happen again in terms of covariates and censoring. All estimates were obtained using a sampling-based approach, which allows information to be input beforehand with lower computational effort. Simulations were done based on a clinical scenario in order to observe some frequentist properties of the estimation procedure in the presence of small and moderate sample sizes. An application of a well-known set of real mammary tumor data is provided.