916 resultados para Bayes Estimator
Resumo:
Mathematical methods combined with measurements of single-cell dynamics provide a means to reconstruct intracellular processes that are only partly or indirectly accessible experimentally. To obtain reliable reconstructions, the pooling of measurements from several cells of a clonal population is mandatory. However, cell-to-cell variability originating from diverse sources poses computational challenges for such process reconstruction. We introduce a scalable Bayesian inference framework that properly accounts for population heterogeneity. The method allows inference of inaccessible molecular states and kinetic parameters; computation of Bayes factors for model selection; and dissection of intrinsic, extrinsic and technical noise. We show how additional single-cell readouts such as morphological features can be included in the analysis. We use the method to reconstruct the expression dynamics of a gene under an inducible promoter in yeast from time-lapse microscopy data.
Resumo:
BACKGROUND: Mitochondrial DNA sequencing increasingly results in the recognition of genetically divergent, but morphologically cryptic lineages. Species delimitation approaches that rely on multiple lines of evidence in areas of co-occurrence are particularly powerful to infer their specific status. We investigated the species boundaries of two cryptic lineages of the land snail genus Trochulus in a contact zone, using mitochondrial and nuclear DNA marker as well as shell morphometrics. RESULTS: Both mitochondrial lineages have a distinct geographical distribution with a small zone of co-occurrence. In the same area, we detected two nuclear genotype clusters, each being highly significantly associated to one mitochondrial lineage. This association however had exceptions: a small number of individuals in the contact zone showed intermediate genotypes (4%) or cytonuclear disequilibrium (12%). Both mitochondrial lineage and nuclear cluster were statistically significant predictors for the shell shape indicating morphological divergence. Nevertheless, the lineage morphospaces largely overlapped (low posterior classification success rate of 69% and 78%, respectively): the two lineages are truly cryptic. CONCLUSION: The integrative approach using multiple lines of evidence supported the hypothesis that the investigated Trochulus lineages are reproductively isolated species. In the small contact area, however, the lineages hybridise to a limited extent. This detection of a hybrid zone adds an instance to the rare reported cases of hybridisation in land snails.
Resumo:
We present simple procedures for the prediction of a real valued sequence. The algorithms are based on a combinationof several simple predictors. We show that if the sequence is a realization of a bounded stationary and ergodic random process then the average of squared errors converges, almost surely, to that of the optimum, given by the Bayes predictor. We offer an analog result for the prediction of stationary gaussian processes.
Resumo:
In this paper we propose a subsampling estimator for the distribution ofstatistics diverging at either known rates when the underlying timeseries in strictly stationary abd strong mixing. Based on our results weprovide a detailed discussion how to estimate extreme order statisticswith dependent data and present two applications to assessing financialmarket risk. Our method performs well in estimating Value at Risk andprovides a superior alternative to Hill's estimator in operationalizingSafety First portofolio selection.
Resumo:
We introduce simple nonparametric density estimators that generalize theclassical histogram and frequency polygon. The new estimators are expressed as linear combination of density functions that are piecewisepolynomials, where the coefficients are optimally chosen in order to minimize the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators, and study theirperformance in a simulation study.
Resumo:
Despite the advancement of phylogenetic methods to estimate speciation and extinction rates, their power can be limited under variable rates, in particular for clades with high extinction rates and small number of extant species. Fossil data can provide a powerful alternative source of information to investigate diversification processes. Here, we present PyRate, a computer program to estimate speciation and extinction rates and their temporal dynamics from fossil occurrence data. The rates are inferred in a Bayesian framework and are comparable to those estimated from phylogenetic trees. We describe how PyRate can be used to explore different models of diversification. In addition to the diversification rates, it provides estimates of the parameters of the preservation process (fossilization and sampling) and the times of speciation and extinction of each species in the data set. Moreover, we develop a new birth-death model to correlate the variation of speciation/extinction rates with changes of a continuous trait. Finally, we demonstrate the use of Bayes factors for model selection and show how the posterior estimates of a PyRate analysis can be used to generate calibration densities for Bayesian molecular clock analysis. PyRate is an open-source command-line Python program available at http://sourceforge.net/projects/pyrate/.
Resumo:
We propose a new econometric estimation method for analyzing the probabilityof leaving unemployment using uncompleted spells from repeated cross-sectiondata, which can be especially useful when panel data are not available. Theproposed method-of-moments-based estimator has two important features:(1) it estimates the exit probability at the individual level and(2) it does not rely on the stationarity assumption of the inflowcomposition. We illustrate and gauge the performance of the proposedestimator using the Spanish Labor Force Survey data, and analyze the changesin distribution of unemployment between the 1980s and 1990s during a periodof labor market reform. We find that the relative probability of leavingunemployment of the short-term unemployed versus the long-term unemployedbecomes significantly higher in the 1990s.
Resumo:
This paper studies the apparent contradiction between two strands of the literature on the effects of financial intermediation on economic activity. On the one hand, the empirical growth literature finds a positive effect of financial depth as measured by, for instance, private domestic credit and liquid liabilities (e.g., Levine, Loayza, and Beck 2000). On the other hand, the banking and currency crisis literature finds that monetary aggregates, such as domestic credit, are among the best predictors of crises and their related economic downturns (e.g., Kaminski and Reinhart 1999). The paper accounts for these contrasting effects based on the distinction between the short- and long-run impacts of financial intermediation. Working with a panel of cross-country and time-series observations, the paper estimates an encompassing model of short- and long-run effects using the Pooled Mean Group estimator developed by Pesaran, Shin, and Smith (1999). The conclusion from this analysis is that a positive long-run relationship between financial intermediation and output growth co-exists with a, mostly, negative short-run relationship. The paper further develops an explanation for these contrasting effects by relating them to recent theoretical models, by linking the estimated short-run effects to measures of financial fragility(namely, banking crises and financial volatility), and by jointly analyzing the effects of financial depth and fragility in classic panel growth regressions.
Resumo:
Although the histogram is the most widely used density estimator, itis well--known that the appearance of a constructed histogram for a given binwidth can change markedly for different choices of anchor position. In thispaper we construct a stability index $G$ that assesses the potential changesin the appearance of histograms for a given data set and bin width as theanchor position changes. If a particular bin width choice leads to an unstableappearance, the arbitrary choice of any one anchor position is dangerous, anda different bin width should be considered. The index is based on the statisticalroughness of the histogram estimate. We show via Monte Carlo simulation thatdensities with more structure are more likely to lead to histograms withunstable appearance. In addition, ignoring the precision to which the datavalues are provided when choosing the bin width leads to instability. We provideseveral real data examples to illustrate the properties of $G$. Applicationsto other binned density estimators are also discussed.
Resumo:
This paper proposes to estimate the covariance matrix of stock returnsby an optimally weighted average of two existing estimators: the samplecovariance matrix and single-index covariance matrix. This method isgenerally known as shrinkage, and it is standard in decision theory andin empirical Bayesian statistics. Our shrinkage estimator can be seenas a way to account for extra-market covariance without having to specifyan arbitrary multi-factor structure. For NYSE and AMEX stock returns from1972 to 1995, it can be used to select portfolios with significantly lowerout-of-sample variance than a set of existing estimators, includingmulti-factor models.
Resumo:
Questionnaire studies indicate that high-anxious musicians may suffer from hyperventilation symptoms before and/or during performance. Reported symptoms include amongst others shortness of breath, fast or deep breathing, dizziness and thumping heart. However, no study has yet tested if these self-reported symptoms reflect actual cardio respiratory changes. Disturbances in breathing patterns and hyperventilation may contribute to the often observed poorer performance of anxious musicians under stressful performance situations. The main goal of this study is to determine if music performance anxiety is manifest physiologically in specific correlates of cardio respiratory activity. We studied 74 professional music students divided into two groups (i.e. high-anxious and lowanxious) based on their self-reported performance anxiety in three distinct situations: baseline, private performance (without audience), public performance (with audience). We measured a) breathing patterns, end-tidal carbon dioxide (EtCO2, a good non-invasive estimator for hyperventilation), ECG and b) self-perceived emotions and self-perceived physiological activation. The poster will concentrate on the preliminary results of this study. The focus will be a) on differences between high-anxious and low-anxious musicians regarding breaths per minute and heart rate and b) on the response coherence between self-perceived palpitations and actual heart rate.
Resumo:
In this article we propose using small area estimators to improve the estimatesof both the small and large area parameters. When the objective is to estimateparameters at both levels accurately, optimality is achieved by a mixed sampledesign of fixed and proportional allocations. In the mixed sample design, oncea sample size has been determined, one fraction of it is distributedproportionally among the different small areas while the rest is evenlydistributed among them. We use Monte Carlo simulations to assess theperformance of the direct estimator and two composite covariant-freesmall area estimators, for different sample sizes and different sampledistributions. Performance is measured in terms of Mean Squared Errors(MSE) of both small and large area parameters. It is found that the adoptionof small area composite estimators open the possibility of 1) reducingsample size when precision is given, or 2) improving precision for a givensample size.
Resumo:
Most methods for small-area estimation are based on composite estimators derived from design- or model-based methods. A composite estimator is a linear combination of a direct and an indirect estimator with weights that usually depend on unknown parameters which need to be estimated. Although model-based small-area estimators are usually based on random-effects models, the assumption of fixed effects is at face value more appropriate.Model-based estimators are justified by the assumption of random (interchangeable) area effects; in practice, however, areas are not interchangeable. In the present paper we empirically assess the quality of several small-area estimators in the setting in which the area effects are treated as fixed. We consider two settings: one that draws samples from a theoretical population, and another that draws samples from an empirical population of a labor force register maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two types of composite estimators: a) those that use weights that involve area specific estimates of bias and variance; and, b) those that use weights that involve a common variance and a common squared bias estimate for all the areas. We assess their precision and discuss alternatives to optimizing composite estimation in applications.
Resumo:
OBJECTIVES: The purpose of this study was to evaluate the association between inflammation and heart failure (HF) risk in older adults. BACKGROUND: Inflammation is associated with HF risk factors and also directly affects myocardial function. METHODS: The association of baseline serum concentrations of interleukin (IL)-6, tumor necrosis factor-alpha, and C-reactive protein (CRP) with incident HF was assessed with Cox models among 2,610 older persons without prevalent HF enrolled in the Health ABC (Health, Aging, and Body Composition) study (age 73.6 +/- 2.9 years; 48.3% men; 59.6% white). RESULTS: During follow-up (median 9.4 years), HF developed in 311 (11.9%) participants. In models controlling for clinical characteristics, ankle-arm index, and incident coronary heart disease, doubling of IL-6, tumor necrosis factor-alpha, and CRP concentrations was associated with 29% (95% confidence interval: 13% to 47%; p < 0.001), 46% (95% confidence interval: 17% to 84%; p = 0.001), and 9% (95% confidence interval: -1% to 24%; p = 0.087) increase in HF risk, respectively. In models including all 3 markers, IL-6, and tumor necrosis factor-alpha, but not CRP, remained significant. These associations were similar across sex and race and persisted in models accounting for death as a competing event. Post-HF ejection fraction was available in 239 (76.8%) cases; inflammatory markers had stronger association with HF with preserved ejection fraction. Repeat IL-6 and CRP determinations at 1-year follow-up did not provide incremental information. Addition of IL-6 to the clinical Health ABC HF model improved model discrimination (C index from 0.717 to 0.734; p = 0.001) and fit (decreased Bayes information criterion by 17.8; p < 0.001). CONCLUSIONS: Inflammatory markers are associated with HF risk among older adults and may improve HF risk stratification.
Resumo:
We study the issue of income convergence across countries and regions witha Bayesian estimator which allows us to use information in an efficient andflexible way. We argue that the very slow convergence rates to a commonlevel of per-capita income found, e.g., by Barro and Xavier Sala-i-Martin,is due to a 'fixed effect bias' that their cross-sectional analysisintroduces in the results. Our approach permits the estimation of differentconvergence rates to different steady states for each cross sectional unit.When this diversity is allowed, we find that convergence of each unit to(its own) steady state income level is much faster than previously estimatedbut that cross sectional differences persist: inequalities will only bereduced by a small amount by the passage of time. The cross countrydistribution of the steady state is largely explained by the cross countrydistribution of initial conditions.