791 resultados para Bat conservation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomic era has revealed that the large repertoire of observed animal phenotypes is dependent on changes in the expression patterns of a finite number of genes, which are mediated by a plethora of transcription factors (TFs) with distinct specificities. The dimerization of TFs can also increase the complexity of a genetic regulatory network manifold, by combining a small number of monomers into dimers with distinct functions. Therefore, studying the evolution of these dimerizing TFs is vital for understanding how complexity increased during animal evolution. We focus on the second largest family of dimerizing TFs, the basic-region leucine zipper (bZIP), and infer when it expanded and how bZIP DNA-binding and dimerization functions evolved during the major phases of animal evolution. Specifically, we classify the metazoan bZIPs into 19 families and confirm the ancient nature of at least 13 of these families, predating the split of the cnidaria. We observe fixation of a core dimerization network in the last common ancestor of protostomes-deuterostomes. This was followed by an expansion of the number of proteins in the network, but no major dimerization changes in interaction partners, during the emergence of vertebrates. In conclusion, the bZIPs are an excellent model with which to understand how DNA binding and protein interactions of TFs evolved during animal evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to enter torpor at low ambient temperature, which enables insectivorous bats to survive seasonal food shortage, is often seen as a prerequisite for colonizing cold environments. Free-tailed bats (Molossidae) show a distribution with a maximum latitudinal extension that appears to be intermediate between truly tropical and temperate-zone bat families. We therefore tested the hypothesis that Tadarida teniotis, the molossid species reaching the highest latitude worldwide (46 degrees N), lacks the extreme physiological adaptations to cold that enable other sympatric bats to enter further into the temperate zone. We studied the metabolism of individuals subjected to various ambient temperatures in the laboratory by respirometry, and we monitored the body temperature of free-ranging individuals in winter and early spring in the Swiss Alps using temperature-sensitive radio-tags. For comparison, metabolic data were obtained from Nyctalus noctula, a typically hibernating vespertilionid bat of similar body size and convergent foraging tactics. The metabolic data support the hypothesis that T. teniotis cannot experience such low ambient temperatures as sympatric temperate-zone vespertilionid bats without incurring much higher energetic costs for thermogenesis. The minimum rate of metabolism in torpor was obtained at 7.5 degrees-10 degrees C in T. teniotis, as compared to 2.5 degrees-5 degrees C in N. noctula. Field data showed that T. teniotis behaves as a classic thermo-conforming hibernator in the Alps, with torpor bouts lasting up to 8 d. This contradicts the widely accepted opinion that Molossidae are nonhibernating bars. However, average body temperature (10 degrees-13 degrees C) and mean arousal frequency (3.4 d in one bat in January) appear to be markedly higher than in other temperate-zone bat species. At the northern border of its range T. teniotis selects relatively warm roosts (crevices in tall, south-exposed limestone cliffs) in winter where temperatures oscillate around 10 degrees C. By this means, T. teniotis apparently avoids the risk of prolonged exposure to energetically critical ambient temperatures in torpor (<6.5 degrees-7.5 degrees C) during cold spells. Possibly shared by other Molossidae, the physiological pattern observed in T. teniotis may clearly be linked to the intermediate latitudinal extension of this bat family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Special Points of Interest: • The Division of Soil Conservation celebrated its 70th anniversary July 1, 2009. The Iowa Soil Conservation Laws were enacted in 1939 creating the state soil conservation agency and governing committee and providing for the creation of Iowa’s 100 soil and water conservation districts. • The Mines & Minerals Bureau, through the federal Abandoned Mine Land (AML) Program, worked with various watershed groups to again secure an additional $1 million dollars in funding for the construction on projects in Marion, Mahaska and Monroe Counties. • Iowa hosted the Mississippi River/Gulf of Mexico Hypoxia Task Force tour and meeting in September 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La pression exercée par les activités humaines menace pratiquement tous les écosystèmes aquatiques du globe. Ainsi, sous l'effet de divers facteurs tels que la pollution, le réchauffement climatique ou encore la pêche industrielle, de nombreuses populations de poissons ont vu leurs effectifs chuter et divers changements morphologiques ont été observés. Dans cette étude, nous nous sommes intéressés à une menace particulière: la sélection induite par la pêche sur la croissance des poissons. En effet, la génétique des populations prédit que la soustraction régulière des individus les plus gros peut entraîner des modifications rapides de certains traits physiques comme la croissance individuelle. Cela a par ailleurs été observé dans de nombreuses populations marines ou lacustres, dont les populations de féras, bondelles et autres corégones des lacs suisses. Toutefois, malgré un nombre croissant d'études décrivant ce phénomène, peu de plans de gestion en tiennent compte, car l'importance des effets génétiques liés à la pêche est le plus souvent négligée par rapport à l'impact des changements environnementaux. Le but premier de cette étude a donc été de quantifier l'importance des facteurs génétiques et environnementaux. Dans le premier chapitre, nous avons étudié la population de palée du lac de Joux (Coregonus palaea). Nous avons déterminé les différentiels de sélection dus à la pêche, c'est-à-dire l'intensité de la sélection sur le taux de croissance, ainsi que les changements nets de croissance au cours du temps. Nous avons observé une baisse marquée de croissance et un différentiel de sélection important indiquant qu'au moins 30% de la diminution de croissance observée était due à la pression de sélection induite par la pêche. Dans le deuxième chapitre, nous avons effectué les mêmes analyses sur deux espèces proches du lac de Brienz (C. albellus et C. fatioi) et avons observé des effets similaires dont l'intensité était spécifique à chaque espèce. Dans le troisième chapitre, nous avons analysé deux autres espèces : C. palaea et C. confusus du lac de Bienne, et avons constaté que le lien entre la pression de sélection et la diminution de croissance était influencé par des facteurs environnementaux. Finalement, dans le dernier chapitre, nous avons étudié les effets potentiels de différentes modifications de la taille des mailles des filets utilisés pour la pêche à l'aide de modèles mathématiques. Nous concluons que la pêche a un effet génétique non négligeable (et donc peu réversible) sur la croissance individuelle dans les populations observée, que cet effet est lié à la compétition pour la nourriture et à la qualité de l'environnement, et que certaines modifications simples de la taille des mailles des filets de pêche pourraient nettement diminuer l'effet de sélection et ainsi ralentir, voir même renverser la diminution de croissance observée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim The jaguar, Panthera onca, is a species of global conservation concern. In Mexico, the northernmost part of its distribution range, its conservation status, is particularly critical, while its potential and actual distribution is poorly known. We propose an ensemble model (EM) of the potential distribution for the jaguar in Mexico and identify the priority areas for conservation.Location Mexico.Methods We generated our EM based on three presence-only methods (Ecological Niche Factor Analysis, Mahalanobis distance, Maxent) and considering environmental, biological and anthropogenic factors. We used this model to evaluate the efficacy of the existing Mexican protected areas (PAs), to evaluate the adequacy of the jaguar conservation units (JCUs) and to propose new areas that should be considered for conservation and management of the species in Mexico.Results Our results outline that 16% of Mexico (c. 312,000 km2) can be considered as suitable for the presence of the jaguar. Furthermore, 13% of the suitable areas are included in existing PAs and 14% are included in JCUs (Sanderson et al., 2002).Main conclusions Clearly much more should be carried out to establish a proactive conservation strategy. Based on our results, we propose here new jaguar conservation and management areas that are important for a nationwide conservation blueprint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of their role in limiting gene flow, geographical barriers like mountains or seas often coincide with intraspecific genetic discontinuities. Although the Strait of Gibraltar represents such a potential barrier for both plants and animals, few studies have been conducted on its impact on gene flow. Here we test this effect on a bat species (Myotis myotis) which is apparently distributed on both sides of the strait. Six colonies of 20 Myotis myotis each were sampled in southern Spain and northern Morocco along a linear transect of 1350 km. Results based on six nuclear microsatellite loci reveal no significant population structure within regions, but a complete isolation between bats sampled on each side of the strait. Variability at 600 bp of a mitochondrial gene (cytochrome b) confirms the existence of two genetically distinct and perfectly segregating clades, which diverged several million years ago. Despite the narrowness of the Gibraltar Strait (14 km), these molecular data suggest that neither males, nor females from either region have ever reproduced on the opposite side of the strait. Comparisons of molecular divergence with bats from a closely related species (M. blythii) suggest that the North African clade is possibly a distinct taxon warranting full species rank. We provisionally refer to it as Myotis cf punicus Felten 1977, but a definitive systematic understanding of the whole Mouse-eared bat species complex awaits further genetic sampling, especially in the Eastern Mediterranean areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report on a special investigation of the Benton County Conservation Department for the period June 1, 2010 through November 7, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rate of metabolism and body temperature were studied between -6°C and 38°C in the common pipistrelle bat Pipistrellus pipistrellus (Vespertilionidae), a European species lying close to the lower end of the mammalian size range (body mass 4.9±0.8g, N=28). Individuals maintained only occasionally a normothermic body temperature averaging 35.4±1.1°C (N=4) and often showed torpor during metabolic runs. The thermoneutral zone was found above 33°C, and basal rate of metabolism averaged 7.6±0.8mL O(2)h(-1) (N=28), which is 69% of the value predicted on the basis of body mass. Minimal wet thermal conductance was 161% of the expected value. During torpor, the rate of metabolism was related exponentially to body temperature with a Q(10) value of 2.57. Torpid bats showed intermittent ventilation, with the frequency of ventilatory cycles increasing exponentially with body temperature. Basal rate of metabolism (BMR) varied significantly with season and body temperature, but not with body mass. It was lower before the hibernation period than during the summer. The patterns observed are generally consistent with those exhibited by other vespertilionids of temperate regions. However, divergences occur with previous measurements on European pipistrelles, and the causes of the seasonal variation in BMR, which has only rarely been searched for among vespertilionids, remain to be examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of models describing metapopulations is surveyed and their implications for conservation biology are described. An overview of the use of both population genetic elements and demographic theory in metapopulation models is given. It would appear that most of the current models suffer from either the use of over-simplified demography or the avoidance of selectively important genetic factors. The scale for which predictions are made by the various models is often obscure. A conceptual framework for describing metapopulations by utilising the concept of fitness of local populations is provided and some examples are given. The expectation that any general theory, such as that of metapopulations, can make useful predictions for particular problems of conservation is examined and compared with the prevailing 'state of the art' recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developmental constraints have been postulated to limit the space of feasible phenotypes and thus shape animal evolution. These constraints have been suggested to be the strongest during either early or mid-embryogenesis, which corresponds to the early conservation model or the hourglass model, respectively. Conflicting results have been reported, but in recent studies of animal transcriptomes the hourglass model has been favored. Studies usually report descriptive statistics calculated for all genes over all developmental time points. This introduces dependencies between the sets of compared genes and may lead to biased results. Here we overcome this problem using an alternative modular analysis. We used the Iterative Signature Algorithm to identify distinct modules of genes co-expressed specifically in consecutive stages of zebrafish development. We then performed a detailed comparison of several gene properties between modules, allowing for a less biased and more powerful analysis. Notably, our analysis corroborated the hourglass pattern at the regulatory level, with sequences of regulatory regions being most conserved for genes expressed in mid-development but not at the level of gene sequence, age, or expression, in contrast to some previous studies. The early conservation model was supported with gene duplication and birth that were the most rare for genes expressed in early development. Finally, for all gene properties, we observed the least conservation for genes expressed in late development or adult, consistent with both models. Overall, with the modular approach, we showed that different levels of molecular evolution follow different patterns of developmental constraints. Thus both models are valid, but with respect to different genomic features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information about the population genetic structures of parasites is important for an understanding of parasite transmission pathways and ultimately the co-evolution with their hosts. If parasites cannot disperse independently of their hosts, a parasite's population structure will depend upon the host's spatial distribution. Geographical barriers affecting host dispersal can therefore lead to structured parasite populations. However, how the host's social system affects the genetic structure of parasite populations is largely unknown. We used mitochondrial DNA (mtDNA) to describe the spatio-temporal population structure of a contact-transmitted parasitic wing mite (Spinturnix bechsteini) and compared it to that of its social host, the Bechstein's bat (Myotis bechsteinii). We observed no genetic differentiation between mites living on different bats within a colony. This suggests that mites can move freely among bats of the same colony. As expected in case of restricted inter-colony dispersal, we observed a strong genetic differentiation of mites among demographically isolated bat colonies. In contrast, we found a strong genetic turnover between years when we investigated the temporal variation of mite haplotypes within colonies. This can be explained with mite dispersal occuring between colonies and bottlenecks of mite populations within colonies. The observed absence of isolation by distance could be the result from genetic drift and/or from mites dispersing even between remote bat colonies, whose members may meet at mating sites in autumn or in hibernacula in winter. Our data show that the population structure of this parasitic wing mite is influenced by its own demography and the peculiar social system of its bat host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the population genetic structure of the Maghrebian bat, Myotis punicus, between the mainland and islands to assess the island colonization pattern and current gene flow between nearby islands and within the mainland. Location North Africa and the Mediterranean islands of Corsica and Sardinia. Methods We sequenced part of the control region (HVII) of 79 bats across 11 colonies. The phylogeographical pattern was assessed by analysing molecular diversity indices, examining differentiation among populations and estimating divergence time. In addition, we genotyped 182 bats across 10 colonies at seven microsatellite loci. We used analysis of molecular variance and a Bayesian approach to infer nuclear population structure. Finally, we estimated sex-specific dispersal between Corsica and Sardinia. Results Mitochondrial analyses indicated that colonies between Corsica, Sardinia and North Africa are highly differentiated. Within islands there was no difference between colonies, while at the continental level Moroccan and Tunisian populations were highly differentiated. Analyses with seven microsatellite loci showed a similar pattern. The sole difference was the lack of nuclear differentiation between populations in North Africa, suggesting a male-biased dispersal over the continental area. The divergence time of Sardinian and Corsican populations was estimated to date back to the early and mid-Pleistocene. Main conclusions Island colonization by the Maghrebian bats seems to have occurred in a stepping-stone manner and certainly pre-dated human colonization. Currently, open water seems to prevent exchange of bats between the two islands, despite their ability to fly and the narrowness of the strait of Bonifacio. Corsican and Sardinian populations are thus currently isolated from any continental gene pool and must therefore be considered as different evolutionarily significant units (ESU).