890 resultados para Bagg albino mouse
Resumo:
Despite ethical and technical concerns, the in vivo method, or more commonly referred to mouse bioassay (MBA), is employed globally as a reference method for phycotoxin analysis in shellfish. This is particularly the case for paralytic shellfish poisoning (PSP) and emerging toxin monitoring. A high-performance liquid chromatography method (HPLC-FLD) has been developed for PSP toxin analysis, but due to difficulties and limitations in the method, this procedure has not been fully implemented as a replacement. Detection of the diarrhetic shellfish poisoning (DSP) toxins has moved towards LC-mass spectrometry (MS) analysis, whereas the analysis of the amnesic shellfish poisoning (ASP) toxin domoic acid is performed by HPLC. Although alternative methods of detection to the MBA have been described, each procedure is specific for a particular toxin and its analogues, with each group of toxins requiring separate analysis utilising different extraction procedures and analytical equipment. In addition, consideration towards the detection of unregulated and emerging toxins on the replacement of the MBA must be given. The ideal scenario for the monitoring of phycotoxins in shellfish and seafood would be to evolve to multiple toxin detection on a single bioanalytical sensing platform, i.e. 'an artificial mouse'. Immunologically based techniques and in particular surface plasmon resonance technology have been shown as a highly promising bioanalytical tool offering rapid, real-time detection requiring minimal quantities of toxin standards. A Biacore Q and a prototype multiplex SPR biosensor have been evaluated for their ability to be fit for purpose for the simultaneous detection of key regulated phycotoxin groups and the emerging toxin palytoxin. Deemed more applicable due to the separate flow channels, the prototype performance for domoic acid, okadaic acid, saxitoxin, and palytoxin calibration curves in shellfish achieved detection limits (IC20) of 4,000, 36, 144 and 46 μg/kg of mussel, respectively. A one-step extraction procedure demonstrated recoveries greater than 80 % for all toxins. For validation of the method at the 95 % confidence limit, the decision limits (CCα) determined from an extracted matrix curve were calculated to be 450, 36 and 24 μg/kg, and the detection capability (CCβ) as a screening method is ≤10 mg/kg, ≤160 μg/kg and ≤400 μg/kg for domoic acid, okadaic acid and saxitoxin, respectively.
Resumo:
BACKGROUND: A clinical study to investigate the leukotriene B(4) (LTB(4))-receptor antagonist BIIL 284 in cystic fibrosis (CF) patients was prematurely terminated due to a significantly increased risk of adverse pulmonary events. We aimed to establish the effect of BIIL284 in models of Pseudomonas aeruginosa lung infection, thereby contributing to a better understanding of what could have led to adverse pulmonary events in CF patients.
METHODS: P. aeruginosa DNA in the blood of CF patients during and after acute pulmonary exacerbations and in stable patients with non-CF bronchiectasis (NCFB) and healthy individuals was assessed by PCR. The effect of BIIL 284 treatment was tested in an agar bead murine model of P. aeruginosa lung infection. Bacterial count and inflammation were evaluated in lung and other organs.
RESULTS: Most CF patients (98%) and all patients with NCFB and healthy individuals had negative P. aeruginosa DNA in their blood. Similarly, the P. aeruginosa-infected mice showed bacterial counts in the lung but not in the blood or spleen. BIIL 284 treatment decreased pulmonary neutrophils and increased P. aeruginosa numbers in mouse lungs leading to significantly higher bacteremia rates and lung inflammation compared to placebo treated animals.
CONCLUSIONS: Decreased airway neutrophils induced lung proliferation and severe bacteremia in a murine model of P. aeruginosa lung infection. These data suggest that caution should be taken when administering anti-inflammatory compounds to patients with bacterial infections.
Resumo:
Resveratrol offers pleiotropic health benefits including a reported ability to inhibit lipopolysaccharide (LPS)-induced cytokine production. The aim of this work was to prepare, characterize and evaluate a resveratrol nanoparticulate formulation based on zein. For this purpose, the oral bioavailability of the encapsulated polyphenol as well as its anti-inflammatory effects in a mouse model of endotoxic shock was studied. The resveratrol-loaded nanoparticles displayed a mean size of 307±3 nm, with a negative zeta potential (-51.1±1.55 mV), and a polyphenol loading of 80.2±3.26 μg/mg. In vitro, the release of resveratrol from the nanoparticles was found to be pH independent and adjusted well to the Peppas-Sahlin kinetic model, suggesting a mechanism based on the combination of diffusion and erosion of the nanoparticle matrix. Pharmacokinetic studies demonstrated that zein-based nanoparticles provided high and prolonged plasma levels of the polyphenol for at least 48 h. The oral bioavailability of resveratrol when administered in these nanoparticles increased up to 50% (19.2-fold higher than for the control solution of the polyphenol). Furthermore, nanoparticles administered daily for 7 days at 15 mg/kg, were able to diminish the endotoxic symptoms induced in mice by the intraperitoneal administration of LPS (i.e., hypothermia, piloerection and stillness). In addition, serum TNF-α levels were slightly lower (approximately 15%) than those observed in the control.