956 resultados para BROWN CAPUCHINS
Resumo:
Abstract Background How are morphological evolution and developmental changes related? This rather old and intriguing question had a substantial boost after the 70s within the framework of heterochrony (changes in rates or timing of development) and nowadays has the potential to make another major leap forward through the combination of approaches: molecular biology, developmental experimentation, comparative systematic studies, geometric morphometrics and quantitative genetics. Here I take an integrated approach combining life-history comparative analyses, classical and geometric morphometrics applied to ontogenetic series to understand changes in size and shape which happen during the evolution of two New World Monkeys (NWM) sister genera. Results Cebus and Saimiri share the same basic allometric patterns in skull traits, a result robust to sexual and ontogenetic variation. If adults of both genera are compared in the same scale (discounting size differences) most differences are small and not statistically significant. These results are consistent using both approaches, classical and geometric Morphometrics. Cebus is a genus characterized by a number of peramorphic traits (adult-like) while Saimiri is a genus with paedomorphic (child like) traits. Yet, the whole clade Cebinae is characterized by a unique combination of very high pre-natal growth rates and relatively slow post-natal growth rates when compared to the rest of the NWM. Morphologically Cebinae can be considered paedomorphic in relation to the other NWM. Geometric morphometrics allows the precise separation of absolute size, shape variation associated with size (allometry), and shape variation non-associated with size. Interestingly, and despite the fact that they were extracted as independent factors (principal components), evolutionary allometry (those differences in allometric shape associated with intergeneric differences) and ontogenetic allometry (differences in allometric shape associated with ontogenetic variation within genus) are correlated within these two genera. Furthermore, morphological differences produced along these two axes are quite similar. Cebus and Saimiri are aligned along the same evolutionary allometry and have parallel ontogenetic allometry trajectories. Conclusion The evolution of these two Platyrrhini monkeys is basically due to a size differentiation (and consequently to shape changes associated with size). Many life-history changes are correlated or may be the causal agents in such evolution, such as delayed on-set of reproduction in Cebus and larger neonates in Saimiri.
Resumo:
The composition and seasonal variation of brachyuran and anomuran species associated with mussel farms were evaluated at Praia da Cocanha, São Paulo between May 2007 and February 2008. Nine mussel ropes were sampled at random in each quarter, and 1,208 organisms were identified, comprising five families and 28 species. The most numerous species was the porcellanid Pachycheles laevidactylus (18.5%), followed by the xanthids Acantholobulus schmitti (16.6%), Hexapanopeus paulensis (11.3%), Panopeus americanus (10.2%), and Menippe nodifrons (8.4%). The exotic crab Charybdis hellerii was recorded throughout the study period. The ecological descriptors, except Pielou evenness index, varied significantly over the time. The highest abundance and diversity of the species were recorded during November and February. This pattern was reversed for Berger-Parker dominance, with the lowest values recorded in February. The development of epifauna was correlated with the different stages of the mussel farms, since the mean size of mussels and consequently the abundance of epibiotic organisms and the structural complexity on the mussel ropes increased from May (seeding) until February (harvest). Despite this, the temporal population variations in recruitment patterns of the different epibionts should not be overlooked. The results indicated that the mussel farms provided favorable conditions for the development of these crustacean groups, which could be used in environmental monitoring programs and / or be exploited for the aquarium trade.
Resumo:
Centro de Biodiversidad y Gestión Ambiental, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
Resumo:
[EN] Since the industrial revolution, anthropogenic CO2 emissions have caused ocean acidification, which particularly affects calcified organisms. Given the fan-like calcified fronds of the brown alga Padina pavonica, we evaluated the acute (shortterm) effects of a sudden pH drop due to a submarine volcanic eruption (October 2011–early March 2012) affecting offshore waters around El Hierro Island (Canary Islands, Spain). We further studied the chronic (long-term) effects of the continuous decrease in pH in the last decades around the Canarian waters. In both the observational and retrospective studies (using herbarium collections of P. pavonica thalli from the overall Canarian Archipelago), the percent of surface calcium carbonate coverage of P. pavonica thalli were contrasted with oceanographic data collected either in situ (volcanic eruption event) or from the ESTOC marine observatory data series (herbarium study). Results showed that this calcified alga is sensitive to acute and chronic environmental pH changes. In both cases, pH changes predicted surface thallus calcification, including a progressive decalcification over the last three decades. This result concurs with previous studies where calcareous organisms decalcify under more acidic conditions. Hence, Padina pavonica can be implemented as a bio-indicator of ocean acidification (at short and long time scales) for monitoring purposes over wide geographic ranges, as this macroalga is affected and thrives (unlike strict calcifiers) under more acidic conditions
Resumo:
Nonostante lo sforzo sempre crescente mirato allo studio delle malattie che colpiscono le sclerattinie, ancora poco si sa circa distribuzione, prevalenza, host range e fattori che concorrono alla comparsa di queste patologie, soprattutto nell’area indopacifica. Questo studio si propone quindi lo scopo di documentare la presenza della Brown Band Disease all’interno delle scogliere madreporiche dell’Arcipelago delle Maldive. Nell’arco di tempo tra Novembre e Dicembre 2013 è stata effettuata una valutazione di tipo quantitativo di tale patologia su tre isole appartenenti l’Atollo di Faafu, rispettivamente Magoodhoo, Filitheyo e Adangau. Queste tre isole sono caratterizzate da un diverso sfruttamento da parte dell’uomo: la prima isola è abitata da locali, la seconda caratterizzata dalla presenza di un resort e l’ultima, un’isola deserta. Al fine di valutare prevalenza, distribuzione e host range della BrBD sono stati effettuati belt transect (25x2 m), point intercept transect e analisi chimico fisiche delle acque. La Brown Band Disease è risultata essere diffusa tra le isole con prevalenze inferiori al 0,50%. Queste non hanno mostrato differenze significative tra le isole, facendo quindi ipotizzare che i diversi valori osservati potrebbero essere imputati a variazioni casuali e naturali. In tutta l’area investigata, le stazioni più profonde hanno mostrato valori di prevalenza maggiori. La patologia è stata registrata infestare soprattutto il genere Acropora (con prevalenza media totale inferiore all’1%) e in un solo caso il genere Isopora. È stato dimostrato come sia presente una correlazione negativa tra densità totale delle sclerattinie e la prevalenza della Brown Band sul genere Acropora. É stato inoltre notato come vi fosse una correlazione positiva tra la prevalenza della BrBD e la presenza del gasteropode Drupella sulle colonie già malate. Poiché il principale ospite della patologia è anche il più abbondante nelle scogliere madreporiche maldiviane, si rendono necessari ulteriori accertamenti e monitoraggi futuri della BrBD.
Resumo:
Nearly 500 brown dwarfs have been discovered in recent years. The majority of these brown dwarfs exist in the solar neighborhood, yet determining their fundamental properties (mass, age, temperature & metallicity) has proved to be quite difficult, with current estimates relying heavily on theoretical models. Binary brown dwarfs provide a unique opportunity to empirically determine fundamental properties, which can then be used to test model predictions. In addition, the observed binary fractions, separations, mass ratios, & orbital eccentricities can provide insight into the formation mechanism of these low-mass objects. I will review the results of various brown dwarf multiplicity studies, and will discuss what we have learned about the formation and evolution of brown dwarfs by examining their binary properties as a function of age and mass.
Resumo:
The formation of aerosols is a key component in understanding cloud formation in the context of radiative forcings and global climate modeling. Biogenic volatile organic compounds (BVOCs) are a significant source of aerosols, yet there is still much to be learned about their structures, sources, and interactions. The aims of this project were to identify the BVOCs found in the defense chemicals of the brown marmorated stink bug Halymorpha halys and quantify them using gas chromatography-mass spectrometry (GC/MS) and test whether oxidation of these compounds by ozone-promoted aerosol and cloud seed formation. The bugs were tested under two conditions: agitation by asphyxiation and direct glandular exposure. Tridecane, 2(5H)-furanone 5-ethyl, and (E)-2-decenal were identified as the three most abundant compounds. H. halys were also tested in the agitated condition in a smog chamber. It was found that in the presence of 100-180 ppm ozone, secondary aerosols do form. A scanning mobility particle sizer (SMPS) and a cloud condensation nuclei counter (CCNC) were used to characterize the secondary aerosols that formed. This reaction resulted in 0.23 microg/ bug of particulate mass. It was also found that these secondary organic aerosol particles could act as cloud condensation nuclei. At a supersaturation of 1%, we found a kappa value of 0.09. Once regional populations of these stink bugs stabilize and the populations estimates can be made, the additional impacts of their contribution to regional air quality can be calculated.
Resumo:
White-nose syndrome (WNS) is an emerging infectious disease of hibernating bats linked to the death of an estimated 5.7 million or more bats in the northeastern United States and Canada. White-nose syndrome is caused by the cold-loving fungus Pseudogymnoascus destructans (Pd), which invades the skin of the muzzles, ears, and wings of hibernating bats. Previous work has shown that WNS-affected bats arouse to euthermic or near euthermic temperatures during hibernation significantly more frequently than normal and that these too-frequent arousals are tied to severity of infection and death date. We quantified the behavior of bats during these arousal bouts to understand better the causes and consequences of these arousals. We hypothesized that WNS-affected bats would display increased levels of activity (especially grooming) during their arousal bouts from hibernation compared to WNS-unaffected bats. Behavior of both affected and unaffected hibernating bats in captivity was monitored from December 2010 to March 2011 using temperature-sensitive dataloggers attached to the backs of bats and infrared motion-sensitive cameras. The WNS-affected bats exhibited significantly higher rates of grooming, relative to unaffected bats, at the expense of time that would otherwise be spent inactive. Increased self-grooming may be related to the presence of the fungus. Elevated activity levels in affected bats likely increase energetic stress, whereas the loss of rest (inactive periods when aroused from torpor) may jeopardize the ability of a bat to reestablish homeostasis in a number of physiologic systems.
Resumo:
We have measured high-precision infrared parallaxes with the Canada-France-Hawaii Telescope for a large sample of candidate young (approximate to 10-100 Myr) and intermediate-age (approximate to 100-600 Myr) ultracool dwarfs, with spectral types ranging from M8 to T2.5. These objects are compelling benchmarks for substellar evolution and ultracool atmospheres at lower surface gravities (i.e., masses) than most of the field population. We find that the absolute magnitudes of our young sample can be systematically offset from ordinary (older) field dwarfs, with the young late-M objects being brighter and the young/dusty mid-L (L3-L6.5) objects being fainter, especially at J band. Thus, we conclude the "underluminosity" of the young planetary-mass companions HR 8799b and 2MASS J1207-39b compared to field dwarfs is also manifested in young free-floating brown dwarfs, though the effect is not as extreme. At the same time, some young objects over the full spectral type range of our sample are similar to field objects, and thus a simple correspondence between youth and magnitude offset relative to the field population appears to be lacking. Comparing the kinematics of our sample to nearby stellar associations and moving groups, we identify several new moving group members, including the first free-floating L dwarf in the AB Dor moving group, 2MASS J0355+11. Altogether, the effects of surface gravity (age) and dust content on the magnitudes and colors of substellar objects appear to be degenerate. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The formation of aerosols is a key component in understanding cloud formation in the context of radiative forcings and global climate modeling. Biogenic volatile organic compounds (BVOCs) are a significant source of aerosols, yet there is still much to be learned about their structures, sources, and interactions. The aims of this project were to identify the BVOCs found in the defense chemicals of the brown marmorated stink bug Halymorpha halys and quantify them using gas chromatography-mass spectrometry (GC/MS) and test whether oxidation of these compounds by ozone-promoted aerosol and cloud seed formation. The bugs were tested under two conditions: agitation by asphyxiation and direct glandular exposure. Tridecane, 2(5H)-furanone 5-ethyl, and (E)-2-decenal were identified as the three most abundant compounds. H. halys were also tested in the agitated condition in a smog chamber. It was found that in the presence of 100-180 ppm ozone, secondary aerosols do form. A scanning mobility particle sizer (SMPS) and a cloud condensation nuclei counter (CCNC) were used to characterize the secondary aerosols that formed. This reaction resulted in 0.23 mu g/bug of particulate mass. It was also found that these secondary organic aerosol particles could act as cloud condensation nuclei. At a supersaturation of 1%, we found a kappa value of 0.09. Once regional populations of these stink bugs stablilize and the populations estimates can be made, the additional impacts of their contribution to regional air quality can be calculated. Implications: Halymorpha halys (brown marmorated stink bugs) are a relatively new invasive species introduced in the United States near Allentown, Pennsylvania. The authors chemically speciated the bugs' defense pheromones and found that tridecane, 5-ethyl-2(5H)-furanone, and (E)-2-decenal dominated their emissions. Their defense emissions were reacted with atmospherically relevant concentrations of ozone and resulted in 0.23 g of particulate matter per emission per bug. Due to the large population of these bugs in some regions, these emissions could contribute appreciably to a region's PM2.5 (particulate matter with an aerodynamic diameter 2.5 m) levels.