870 resultados para Automated Reasoning


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer can assist the process of design by analogy by recording past designs. The experience these represent could be much wider than that of designers using the system, who therefore need to identify potential cases of interest. If the computer assists with this lookup, the designers can concentrate on the more interesting aspect of extracting and using the ideas which are found. However, as the knowledge base grows it becomes ever harder to find relevant cases using a keyword indexing scheme without knowing precisely what to look for. Therefore a more flexible searching system is needed.

If a similarity measure can be defined for the features of the designs, then it is possible to match and cluster them. Using a simple measure like co-occurrence of features within a particular case would allow this to happen without human intervention, which is tedious and time- consuming. Any knowledge that is acquired about how features are related to each other will be very shallow: it is not intended as a cognitive model for how humans understand, learn, or retrieve information, but more an attempt to make effective, efficient use of the information available. The question remains of whether such shallow knowledge is sufficient for the task.

A system to retrieve information from a large database is described. It uses co-occurrences to relate keywords to each other, and then extends search queries with similar words. This seems to make relevant material more accessible, providing hope that this retrieval technique can be applied to a broader knowledge base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated Identification and in particular, Radio Frequency Identification (RFID) promises to assist with the automation of mass customised production processes. RFID has long been used to gather a history or trace of part movements, but the use of it as an integral part of the control process is yet to be fully exploited. Such use places stringent demands on the quality of the sensor data and the method used to interpret that data. in particular, this paper focuses on the issue of correctly identifying, tracking and dealing with aggregated objects with the use of RFID. The presented approach is evaluated in the context of a laboratory manufacturing system that produces customised gift boxes. Copyright © 2005 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The safety of post-earthquake structures is evaluated manually through inspecting the visible damage inflicted on structural elements. This process is time-consuming and costly. In order to automate this type of assessment, several crack detection methods have been created. However, they focus on locating crack points. The next step, retrieving useful properties (e.g. crack width, length, and orientation) from the crack points, has not yet been adequately investigated. This paper presents a novel method of retrieving crack properties. In the method, crack points are first located through state-of-the-art crack detection techniques. Then, the skeleton configurations of the points are identified using image thinning. The configurations are integrated into the distance field of crack points calculated through a distance transform. This way, crack width, length, and orientation can be automatically retrieved. The method was implemented using Microsoft Visual Studio and its effectiveness was tested on real crack images collected from Haiti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimating the fundamental matrix (F), to determine the epipolar geometry between a pair of images or video frames, is a basic step for a wide variety of vision-based functions used in construction operations, such as camera-pair calibration, automatic progress monitoring, and 3D reconstruction. Currently, robust methods (e.g., SIFT + normalized eight-point algorithm + RANSAC) are widely used in the construction community for this purpose. Although they can provide acceptable accuracy, the significant amount of required computational time impedes their adoption in real-time applications, especially video data analysis with many frames per second. Aiming to overcome this limitation, this paper presents and evaluates the accuracy of a solution to find F by combining the use of two speedy and consistent methods: SURF for the selection of a robust set of point correspondences and the normalized eight-point algorithm. This solution is tested extensively on construction site image pairs including changes in viewpoint, scale, illumination, rotation, and moving objects. The results demonstrate that this method can be used for real-time applications (5 image pairs per second with the resolution of 640 × 480) involving scenes of the built environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commercial far-range (>10 m) spatial data collection methods for acquiring infrastructure’s geometric data are not completely automated because of the necessary manual pre- and/or post-processing work. The required amount of human intervention and, in some cases, the high equipment costs associated with these methods impede their adoption by the majority of infrastructure mapping activities. This paper presents an automated stereo vision-based method, as an alternative and inexpensive solution, to producing a sparse Euclidean 3D point cloud of an infrastructure scene utilizing two video streams captured by a set of two calibrated cameras. In this process SURF features are automatically detected and matched between each pair of stereo video frames. 3D coordinates of the matched feature points are then calculated via triangulation. The detected SURF features in two successive video frames are automatically matched and the RANSAC algorithm is used to discard mismatches. The quaternion motion estimation method is then used along with bundle adjustment optimization to register successive point clouds. The method was tested on a database of infrastructure stereo video streams. The validity and statistical significance of the results were evaluated by comparing the spatial distance of randomly selected feature points with their corresponding tape measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tracking of project related entities such as construction equipment, materials, and personnel is used to calculate productivity, detect travel path conflicts, enhance the safety on the site, and monitor the project. Radio frequency tracking technologies (Wi-Fi, RFID, UWB) and GPS are commonly used for this purpose. However, on large-scale sites, deploying, maintaining and removing such systems can be costly and time-consuming. In addition, privacy issues with personnel tracking often limits the usability of these technologies on construction sites. This paper presents a vision based tracking framework that holds promise to address these limitations. The framework uses videos from a set of two or more static cameras placed on construction sites. In each camera view, the framework identifies and tracks construction entities providing 2D image coordinates across frames. Combining the 2D coordinates based on the installed camera system (the distance between the cameras and the view angles of them), 3D coordinates are calculated at each frame. The results of each step are presented to illustrate the feasibility of the framework.