927 resultados para Autologus transplantation
Resumo:
Objective: The objective of this study was to analyze the incidence of and risk factors for healthcare-associated infections (HAI) among hematopoietic stem cell transplantation (HSCT) patients, and the impact of such infections on mortality during hospitalization. Methods: We conducted a 9-year (2001-2009) retrospective cohort study including patients submitted to HSCT at a reference center in Sao Paulo, Brazil. The incidence of HAI was calculated using days of neutropenia as the denominator. Data were analyzed using EpiInfo 3.5.1. Results: Over the 9-year period there were 429 neutropenic HSCT patients, with a total of 6816 days of neutropenia. Bloodstream infections (BSI) were the most frequent infection, presenting in 80 (18.6%) patients, with an incidence of 11.7 per 1000 days of neutropenia. Most bacteremia was due to Gram-negative bacteria: 43 (53.8%) cases were caused by Gram-negative species, while 33 (41.2%) were caused by Gram-positive species, and four (5%) by fungal species. Independent risk factors associated with HAI were prolonged neutropenia (odds ratio (OR) 1.07, 95% confidence interval (CI) 1.04-1.10) and duration of fever (OR 1.20, 95% CI 1.12-1.30). Risk factors associated with death in multivariate analyses were age (OR 1.02, 95% CI 1.01-1.43), being submitted to an allogeneic transplant (OR 3.08, 95% CI 1.68-5.56), a microbiologically documented infection (OR 2.96, 95% CI 1.87-4.6), invasive aspergillosis disease (OR 2.21, 95% CI 1.1-4.3), and acute leukemias (OR 2.24, 95% CI 1.3-3.6). Conclusions: BSI was the most frequent HAI, and there was a predominance of Gram-negative microorganisms. Independent risk factors associated with HAI were duration of neutropenia and fever, and the risk factors for a poor outcome were older age, type of transplant (allogeneic), the presence of a microbiologically documented infection, invasive aspergillosis, and acute leukemia. Further prospective studies with larger numbers of patients may confirm the role of these risk factors for a poor clinical outcome and death in this transplant population. (C) 2012 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
Resumo:
We evaluated the effect of acute and chronic GVHD on relapse and survival after allogeneic hematopoietic SCT (HSCT) for multiple myeloma using non-myeloablative conditioning (NMA) and reduced-intensity conditioning (RIC). The outcomes of 177 HLA-identical sibling HSCT recipients between 1997 and 2005, following NMA (n = 98) or RIC (n = 79) were analyzed. In 105 patients, autografting was followed by planned NMA/RIC allogeneic transplantation. The impact of GVHD was assessed as a time-dependent covariate using Cox models. The incidence of acute GVHD (aGVHD; grades I-IV) was 42% (95% confidence interval (CI), 35-49%) and of chronic GVHD (cGVHD) at 5 years was 59% (95% CI, 49-69%), with 70% developing extensive cGVHD. In multivariate analysis, aGVHD (>= grade I) was associated with an increased risk of TRM (relative risk (RR) = 2.42, P = 0.016), whereas limited cGVHD significantly decreased the risk of myeloma relapse (RR = 0.35, P = 0.035) and was associated with superior EFS (RR = 0.40, P = 0.027). aGVHD had a detrimental effect on survival, especially in those receiving autologous followed by allogeneic HSCT (RR = 3.52, P = 0.001). The reduction in relapse risk associated with cGVHD is consistent with a beneficial graft-vs-myeloma effect, but this did not translate into a survival advantage. Bone Marrow Transplantation (2012) 47, 831-837; doi:10.1038/bmt.2011.192; published online 26 September 2011
Resumo:
Some organ-transplanted patients achieve a state of "operational tolerance" (01) in which graft function is maintained after the complete withdrawal of immunosuppressive drugs. We used a gene panel of regulatory/inflammatory molecules (FOXP3, GATA3, 100, TGFB1, TGFBR1/TBX21, TNF and IFNG) to investigate the gene expression profile in peripheral blood mononuclear cells of renal-transplanted individuals experiencing OT compared to transplanted individuals not displaying OT and healthy individuals (HI). OT subjects showed a predominant regulatory (REG) profile with higher gene expression of GATA3, FOXP3, TGFB1 and TGFB receptor 1 compared to the other groups. This predominant REG gene expression profile displayed stability over time. The significant GATA3 gene and protein expressions in OT individuals suggest that a Th2 deviation may be a relevant pathway to OT. Moreover, the capacity of the REG/INFLAMMA gene panel to discriminate OT by peripheral blood analysis indicates that this state has systemic repercussions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Telomere attrition induces cell senescence and apoptosis. We hypothesized that age-adjusted pretransplantation telomere length might predict treatment-related mortality (TRM) after hematopoietic stem cell transplantation (HSCT). Between 2000 and 2005, 178 consecutive patients underwent HSCT from HLA-identical sibling donors after myeloablative conditioning regimens, mainly for hematologic malignancies (n = 153). Blood lymphocytes' telomere length was measured by real-time quantitative PCR before HSCT. Age-adjusted pretransplantation telomere lengths were analyzed for correlation with clinical outcomes. After age adjustment, patients' telomere-length distribution was similar among all 4 quartiles except for disease stage. There was no correlation between telomere length and engraftment, GVHD, or relapse. The overall survival was 62% at 5 years (95% confidence interval [CI], 54-70). After a median follow-up of 51 months (range, 1-121 months), 43 patients died because of TRM. The TRM rate inversely correlated with telomere length. TRM in patients in the first (lowest telomere length) quartile was significantly higher than in patients with longer telomeres (P = .017). In multivariate analysis, recipients' age (hazard ratio, 1.1; 95% CI, .0-1.1; P = .0001) and age-adjusted telomere length (hazard ratio, 0.4; 95% CI; 0.2-0.8; P = .01) were independently associated with TRM. In conclusion, age-adjusted recipients' telomere length is an independent biologic marker of TRM after HSCT. (Blood. 2012;120(16):3353-3359)
Resumo:
To address the prognostic value of minimal residual disease (MRD) before unrelated cord blood transplantation (UCBT) in children with acute lymphoblastic leukemia (ALL), we analyzed 170 ALL children transplanted in complete remission (CR) after myeloablative conditioning regimen. In all, 72 (43%) were in first CR (CR1), 77 (45%) in second CR (CR2) and 21 (12%) in third CR (CR3). The median interval from MRD quantification to UCBT was 18 days. All patients received single-unit UCBT. Median follow-up was 4 years. Cumulative incidence (CI) of day-60 neutrophil engraftment was 85%. CI of 4 years relapse was 30%, incidence being lower in patients with negative MRD before UCBT (hazard ratio (HR) = 0.4, P = 0.01) and for those transplanted in CR1 and CR2 (HR = 0.3, P = 0.002). Probability of 4 years leukemia-free survival (LFS) was 44%, (56, 44 and 14% for patients transplanted in CR1, CR2 and CR3, respectively (P = 0.0001)). Patients with negative MRD before UCBT had better LFS after UCBT compared with those with positive MRD (54% vs 29%; HR = 2, P = 0.003). MRD assessment before UCBT for children with ALL in remission allows identifying patients at higher risk of relapse after transplantation. Approaches that may decrease relapse incidence in children given UCBT with positive MRD should be investigated to improve final outcomes. Leukemia (2012) 26, 2455-2461; doi:10.1038/leu.2012.123
Resumo:
Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.
Resumo:
Abstract Background Gene therapy in the hematopoietic system remains promising, though certain aspects of vector design, such as transcriptional control elements, continue to be studied. Our group has developed a retroviral vector where transgene expression is controlled by p53 with the intention of harnessing the dynamic and inducible nature of this tumor suppressor and transcription factor. We present here a test of in vivo expression provided by the p53-responsive vector, pCLPG. For this, we used a model of serial transplantation of transduced bone marrow cells. Results We observed, by flow cytometry, that the eGFP transgene was expressed at higher levels when the pCLPG vector was used as compared to the parental pCL retrovirus, where expression is directed by the native MoMLV LTR. Expression from the pCLPG vector was longer lasting, but did decay along with each sequential transplant. The detection of eGFP-positive cells containing either vector was successful only in the bone marrow compartment and was not observed in peripheral blood, spleen or thymus. Conclusions These findings indicate that the p53-responsive pCLPG retrovirus did offer expression in vivo and at a level that surpassed the non-modified, parental pCL vector. Our results indicate that the pCLPG platform may provide some advantages when applied in the hematopoietic system.
Resumo:
Abstract Background The use of stem cells to treat type 1 diabetes mellitus has been proposed for many years, both to downregulate the immune system and to provide β cell regeneration. Conclusion High dose immunosuppression followed by autologous hematopoietic stem cell transplantation is able to induce complete remission (insulin independence) in most patients with early onset type 1 diabetes mellitus.
Resumo:
Abstract Background No formulation of exogenous insulin available to date has yet been able to mimic the physiological nictemeral rhythms of this hormone, and despite all engineering advancements, the theoretical proposal of developing a mechanical replacement for pancreatic β cell still has not been reached. Thus, the replacement of β cells through pancreas and pancreatic islet transplantation are the only concrete alternatives for re-establishing the endogenous insulin secretion in type 1 diabetic patients. Since only 1 to 1.5% of the pancreatic mass corresponds to endocrine tissue, pancreatic islets transplantation arises as a natural alternative. Data from the International Islet Transplant Registry (ITR) from 1983 to December 2000 document a total of 493 transplants performed around the world, with progressively worse rates of post-transplant insulin independence. In 2000, the "Edmonton Protocol" introduced several modifications to the transplantation procedure, such as the use of a steroid-free immunosuppression regimen and transplantation of a mean islet mass of 11,000 islet equivalents per kilogram, which significantly improved 1-year outcomes. Although the results of a 5-year follow-up in 65 patients demonstrated improvement in glycemic instability in a significant portion of them, only 7.5% of the patients have reached insulin independence, indicating the need of further advances in the preservation of the function of transplanted islet. In addition to the scarcity of organs available for transplantation, islets transplantation still faces major challenges, specially those related to cell loss during the process of islet isolation and the losses related to the graft site, apoptosis, allorejection, autoimmunity, and immunosuppression. The main strategies to optimize islet transplantation aim at improving all these aspects. Conclusion Human islet transplantation should be regarded as an intervention that can decrease the frequency of severe hypoglycemic episodes and improve glycemic control in selected patient for whom benefits of 4-5 years duration would be very valuable. Its limitations, however, indicate that the procedure in its current format is not suitable for all patients with type 1 diabetes.
Resumo:
The number of organ and tissue transplants has increased worldwide in recent decades. However, graft rejection, infections due to the use of immunosuppressive drugs and a shortage of graft donors remain major concerns. Carbon monoxide (CO) had long been regarded solely as a poisonous gas. Ultimately, physiological studies unveiled the endogenous production of CO, particularly by the heme oxygenase (HO)-1 enzyme, recognizing CO as a beneficial gas when used at therapeutic doses. The protective properties of CO led researchers to develop uses for it, resulting in devices and molecules that can deliver CO in vitro and in vivo. The resulting interest in clinical investigations was immediate. Studies regarding the CO/HO-1 modulation of immune responses and their effects on various immune disorders gave rise to transplantation research, where CO was shown to be essential in the protection against organ rejection in animal models. This review provides a perspective of how CO modulates the immune system to improve transplantation and suggests its use as a therapy in the field.