981 resultados para Atomic motions
Resumo:
Correction of spectral overlap interference in inductively coupled plasma atomic emission spectrometry by factor analysis is attempted. For the spectral overlap of two known lines, a data matrix can be composed from one or two pure spectra and a spectrum of the mixture. The data matrix is decomposed into a spectra matrix and a concentration matrix by target transformation factor analysis. The component concentration of interest in a binary mixture is obtained from the concentration matrix and interference from the other component is eliminated. This method is applied to correcting spectral interference of yttrium on the determination of copper and aluminium: satisfactory results are obtained. This method may also be applied to correcting spectral overlap interference for more than two lines. Like other methods of correcting spectral interferences, factor analysis can only be used for additive spectral overlap. Results obtained from measurements on copper/yttrium mixtures with different white noise added show that random errors in measurement data do not significantly affect the results of the correction method.
Resumo:
A Kalman filter was developed for resolving overlapping lines in inductively coupled plasma atomic emission spectrometry (ICP-AES) and evaluated experimentally with the determination of La in the presence of Ho, and Cu in the presence of Pr. The whiteness of the innovation sequence for an optimal filter was explored to be the criterion for the correction of the wavelength positioning errors which may occur in spectral scans. Under the conditions of the medium-resolution spectrometer and 1.5 pm step size in scans, the filter effectively resolved the Cu/Pr line pair having a small peak separation of 4.8 pm. For the La/Ho line pair with a peak distance of 9.8 pm, an unbiased estimate for La concentration was still obtained even when the signal-to-background ratio was down to 0.048. Favourable detection limits for real samples were achieved. Unstructured backgrounds were modeled theoretically and all spectral scans therefore did not require the correction for solvent.
Resumo:
This paper deals with the evaluation of the reliability of the analytical results obtained by Kalman filtering. Two criteria for evaluation were compared: one is based on the autocorrelation analysis of the innovation sequence, the so-called NAC criterion; the other is the innovations number, which actually is the autocorrelation coefficient of the innovation sequence at the initial wavelength. Both criteria allow compensation for the wavelength positioning errors in spectral scans, but there exists a difference in the way they work. The NAC criterion can provide information about the reliability of an individual result, which is very useful for the indication of unmodelled emissions, while the innovations number should be incorporated with the normalization of the innovations or seek the help of the sequence itself for the same purpose. The major limitation of the NAC criterion is that it does not allow the theoretical modelling of continuous backgrounds, which, however, is convenient in practical analysis and can be taken with the innovations number criterion.
Resumo:
The use of least-squres polynomial smoothing in ICP-AES is discussed and a method of points insertion into spectral scanning intervals is proposed in the present paper. Optimal FWHM/SR ratio can be obtained, and distortion of smoothed spectra can be avoided by use of the recommended method.
Resumo:
This work evaluates the effect of wavelength positioning errors in spectral scans on analytical results when the Kalman filtering technique is used for the correction of line interferences in inductively coupled plasma atomic emission spectrometry (ICP-AES). The results show that a positioning accuracy of 0.1 pm is required in order to obtain accurate and precise estimates for analyte concentrations. The positioning error in sample scans is more crucial than that in model scans. The relative bias in measured analyte concentration originating from a positioning error in a sample scan increases linearly with an increase in the magnitude of the error and the peak distance of the overlapping lines, but is inversely proportional to the signal-to-background ratio. By the use of an optimization procedure for the positions of scans with the innovations number as the criterion, the wavelength positioning error can be reduced and, correspondingly, the accuracy and precision of analytical results improved.
Resumo:
One of the most attractive features of derivative spectrometry is its higher resolving power. In the present power, numerical derivative techniques are evaluated from the viewpoint of increase in selectivity, the latter being expressed in terms of the interferent equivalent concentration (IEC). Typical spectral interferences are covered, including flat background, sloped background, simple curved background and various types of line overlap with different overlapping degrees, which were defined as the ratio of the net interfering signal at the analysis wavelength to the peak signal of the interfering line. the IECs in the derivative spectra are decreased by one to two order of magnitudes compared to those in the original spectra, and in the most cases, assume values below the conventional detection limits. The overlapping degree is the dominant factor that determines whether an analysis line can be resolved from an interfering line with the derivative techniques. Generally, the second derivative technique is effective only for line overlap with an overlapping degree of less than 0.8. The effects of other factors such as line shape, data smoothing, step size and the intensity ratio of analyte to interferent on the performance of the derivative techniques are also discussed. All results are illustrated with practical examples.
Resumo:
We propose a laser induced sensitized fluorescence spectrometry for measuring the spontaneous emission branching ratios o?the transitions from the ten levels 5f36d7s7p-7M7, 5f36d7s7p-7L6, 5f37s27p-5K6, 5f26d27s2 - 5L7, 5f46d7s - 7L6, (17,070cm-1)-5L6, 5f26d27s2-5K6, 6d7s7p-7L5, 5f36d7s7p-7K5 and 5f26d27s2-5I5 to the ground state of atomic uranium (UI) for the first time. Their relative oscillator strengths have been measured by means of hollow cathode discharge (HCD) emission spectrometry. The radiative...
Resumo:
A method of hydride generation-atomic fluorescence spectrometry was proposed in the present paper for the determination of trace arsenic and selenium in jellyfish. The samples were treated by the combination of microwave digestion and lyophilization. The optimal conditions for treating and analyzing samples were established. The problem of the effect of the superfluous acid in the digesting solution on the results was solved, and the influence of coexisting foreign ions on the determination of arsenic and selenium was investigated. The accuracy of the method was confirmed by the method of standard additions. This method proved to be simple, rapid and repeatable, and is suitable for the analysis of biologic samples containing water.
Resumo:
A new technique was developed for characterisation of stainless steel to intergramilar stress corrosion cracking by atomic force microscopy. The technique proved to be effective in sensitisation identification of AISI 304 stainless steel and might be promising in sensitisation identification of other stainless steels. (c) 2007 Elsevier B.V. All rights reserved.