862 resultados para Artificial nueral network model
Resumo:
BACKGROUND The aim of this study was to identify clinical variables that may predict the need for adjuvant radiotherapy after neoadjuvant chemotherapy (NACT) and radical surgery in locally advanced cervical cancer patients. METHODS A retrospective series of cervical cancer patients with International Federation of Gynecology and Obstetrics (FIGO) stages IB2-IIB treated with NACT followed by radical surgery was analyzed. Clinical predictors of persistence of intermediate- and/or high-risk factors at final pathological analysis were investigated. Statistical analysis was performed using univariate and multivariate analysis and using a model based on artificial intelligence known as artificial neuronal network (ANN) analysis. RESULTS Overall, 101 patients were available for the analyses. Fifty-two (51 %) patients were considered at high risk secondary to parametrial, resection margin and/or lymph node involvement. When disease was confined to the cervix, four (4 %) patients were considered at intermediate risk. At univariate analysis, FIGO grade 3, stage IIB disease at diagnosis and the presence of enlarged nodes before NACT predicted the presence of intermediate- and/or high-risk factors at final pathological analysis. At multivariate analysis, only FIGO grade 3 and tumor diameter maintained statistical significance. The specificity of ANN models in evaluating predictive variables was slightly superior to conventional multivariable models. CONCLUSIONS FIGO grade, stage, tumor diameter, and histology are associated with persistence of pathological intermediate- and/or high-risk factors after NACT and radical surgery. This information is useful in counseling patients at the time of treatment planning with regard to the probability of being subjected to pelvic radiotherapy after completion of the initially planned treatment.
Resumo:
Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthic d18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069-779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (~940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthic d18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonic d18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.
Resumo:
A new method for detecting microcalcifications in regions of interest (ROIs) extracted from digitized mammograms is proposed. The top-hat transform is a technique based on mathematical morphology operations and, in this paper, is used to perform contrast enhancement of the mi-crocalcifications. To improve microcalcification detection, a novel image sub-segmentation approach based on the possibilistic fuzzy c-means algorithm is used. From the original ROIs, window-based features, such as the mean and standard deviation, were extracted; these features were used as an input vector in a classifier. The classifier is based on an artificial neural network to identify patterns belonging to microcalcifications and healthy tissue. Our results show that the proposed method is a good alternative for automatically detecting microcalcifications, because this stage is an important part of early breast cancer detection
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.
Resumo:
The training algorithm studied in this paper is inspired by the biological metaplasticity property of neurons. Tested on different multidisciplinary applications, it achieves a more efficient training and improves Artificial Neural Network Performance. The algorithm has been recently proposed for Artificial Neural Networks in general, although for the purpose of discussing its biological plausibility, a Multilayer Perceptron has been used. During the training phase, the artificial metaplasticity multilayer perceptron could be considered a new probabilistic version of the presynaptic rule, as during the training phase the algorithm assigns higher values for updating the weights in the less probable activations than in the ones with higher probability
Resumo:
The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.
Resumo:
he simulation of complex LoC (Lab-on-a-Chip) devices is a process that requires solving computationally expensive partial differential equations. An interesting alternative uses artificial neural networks for creating computationally feasible models based on MOR techniques. This paper proposes an approach that uses artificial neural networks for designing LoC components considering the artificial neural network topology as an isomorphism of the LoC device topology. The parameters of the trained neural networks are based on equations for modeling microfluidic circuits, analogous to electronic circuits. The neural networks have been trained to behave like AND, OR, Inverter gates. The parameters of the trained neural networks represent the features of LoC devices that behave as the aforementioned gates. This would mean that LoC devices universally compute.
Resumo:
This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.
Resumo:
Abstract This paper presents a new method to extract knowledge from existing data sets, that is, to extract symbolic rules using the weights of an Artificial Neural Network. The method has been applied to a neural network with special architecture named Enhanced Neural Network (ENN). This architecture improves the results that have been obtained with multilayer perceptron (MLP). The relationship among the knowledge stored in the weights, the performance of the network and the new implemented algorithm to acquire rules from the weights is explained. The method itself gives a model to follow in the knowledge acquisition with ENN.
Resumo:
The paper focuses on the analysis of radial-gated spillways, which is carried out by the solution of a numerical model based on the finite element method (FEM). The Oliana Dam is considered as a case study and the discharge capacity is predicted both by the application of a level-set-based free-surface solver and by the use of traditional empirical formulations. The results of the analysis are then used for training an artificial neural network to allow real-time predictions of the discharge in any situation of energy head and gate opening within the operation range of the reservoir. The comparison of the results obtained with the different methods shows that numerical models such as the FEM can be useful as a predictive tool for the analysis of the hydraulic performance of radial-gated spillways.
Resumo:
Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its network use require conditions that make it an expensive technology. All the QKD networks deployed to date are designed as a collection of dedicated point-to-point links that use the trusted repeater paradigm. Instead, we propose a novel network model in which QKD systems use simultaneously quantum and conventional signals that are wavelength multiplexed over a common communication infrastructure. Signals are transmitted end-to-end within a metropolitan area using optical components. The model resembles a commercial telecom network and takes advantage of existing components, thus allowing for a cost-effective and reliable deployment.
Resumo:
Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.
Resumo:
A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.
Resumo:
This paper reports extensive tests of empirical equations developed by different authors for harbour breakwater overtopping. First, the existing equations are compiled and evaluated as tools for estimating the overtopping rates on sloping and vertical breakwaters. These equations are then tested using the data obtained in a number of laboratory studies performed in the Centre for Harbours and Coastal Studies of the CEDEX, Spain. It was found that the recommended application ranges of the empirical equations typically deviate from those revealed in the experimental tests. In addition, a neural network model developed within the European CLASH Project is tested. The wind effects on overtopping are also assessed using a reduced scale physical model
Resumo:
El rebase se define como el transporte de una cantidad importante de agua sobre la coronación de una estructura. Por tanto, es el fenómeno que, en general, determina la cota de coronación del dique dependiendo de la cantidad aceptable del mismo, a la vista de condicionantes funcionales y estructurales del dique. En general, la cantidad de rebase que puede tolerar un dique de abrigo desde el punto de vista de su integridad estructural es muy superior a la cantidad permisible desde el punto de vista de su funcionalidad. Por otro lado, el diseño de un dique con una probabilidad de rebase demasiado baja o nula conduciría a diseños incompatibles con consideraciones de otro tipo, como son las estéticas o las económicas. Existen distintas formas de estudiar el rebase producido por el oleaje sobre los espaldones de las obras marítimas. Las más habituales son los ensayos en modelo físico y las formulaciones empíricas o semi-empíricas. Las menos habituales son la instrumentación en prototipo, las redes neuronales y los modelos numéricos. Los ensayos en modelo físico son la herramienta más precisa y fiable para el estudio específico de cada caso, debido a la complejidad del proceso de rebase, con multitud de fenómenos físicos y parámetros involucrados. Los modelos físicos permiten conocer el comportamiento hidráulico y estructural del dique, identificando posibles fallos en el proyecto antes de su ejecución, evaluando diversas alternativas y todo esto con el consiguiente ahorro en costes de construcción mediante la aportación de mejoras al diseño inicial de la estructura. Sin embargo, presentan algunos inconvenientes derivados de los márgenes de error asociados a los ”efectos de escala y de modelo”. Las formulaciones empíricas o semi-empíricas presentan el inconveniente de que su uso está limitado por la aplicabilidad de las fórmulas, ya que éstas sólo son válidas para una casuística de condiciones ambientales y tipologías estructurales limitadas al rango de lo reproducido en los ensayos. El objetivo de la presente Tesis Doctoral es el contrate de las formulaciones desarrolladas por diferentes autores en materia de rebase en distintas tipologías de diques de abrigo. Para ello, se ha realizado en primer lugar la recopilación y el análisis de las formulaciones existentes para estimar la tasa de rebase sobre diques en talud y verticales. Posteriormente, se llevó a cabo el contraste de dichas formulaciones con los resultados obtenidos en una serie de ensayos realizados en el Centro de Estudios de Puertos y Costas. Para finalizar, se aplicó a los ensayos de diques en talud seleccionados la herramienta neuronal NN-OVERTOPPING2, desarrollada en el proyecto europeo de rebases CLASH (“Crest Level Assessment of Coastal Structures by Full Scale Monitoring, Neural Network Prediction and Hazard Analysis on Permissible Wave Overtopping”), contrastando de este modo la tasa de rebase obtenida en los ensayos con este otro método basado en la teoría de las redes neuronales. Posteriormente, se analizó la influencia del viento en el rebase. Para ello se han realizado una serie de ensayos en modelo físico a escala reducida, generando oleaje con y sin viento, sobre la sección vertical del Dique de Levante de Málaga. Finalmente, se presenta el análisis crítico del contraste de cada una de las formulaciones aplicadas a los ensayos seleccionados, que conduce a las conclusiones obtenidas en la presente Tesis Doctoral. Overtopping is defined as the volume of water surpassing the crest of a breakwater and reaching the sheltered area. This phenomenon determines the breakwater’s crest level, depending on the volume of water admissible at the rear because of the sheltered area’s functional and structural conditioning factors. The ways to assess overtopping processes range from those deemed to be most traditional, such as semi-empirical or empirical type equations and physical, reduced scale model tests, to others less usual such as the instrumentation of actual breakwaters (prototypes), artificial neural networks and numerical models. Determining overtopping in reduced scale physical model tests is simple but the values obtained are affected to a greater or lesser degree by the effects of a scale model-prototype such that it can only be considered as an approximation to what actually happens. Nevertheless, physical models are considered to be highly useful for estimating damage that may occur in the area sheltered by the breakwater. Therefore, although physical models present certain problems fundamentally deriving from scale effects, they are still the most accurate, reliable tool for the specific study of each case, especially when large sized models are adopted and wind is generated Empirical expressions obtained from laboratory tests have been developed for calculating the overtopping rate and, therefore, the formulas obtained obviously depend not only on environmental conditions – wave height, wave period and water level – but also on the model’s characteristics and are only applicable in a range of validity of the tests performed in each case. The purpose of this Thesis is to make a comparative analysis of methods for calculating overtopping rates developed by different authors for harbour breakwater overtopping. First, existing equations were compiled and analysed in order to estimate the overtopping rate on sloping and vertical breakwaters. These equations were then compared with the results obtained in a number of tests performed in the Centre for Port and Coastal Studies of the CEDEX. In addition, a neural network model developed in the European CLASH Project (“Crest Level Assessment of Coastal Structures by Full Scale Monitoring, Neural Network Prediction and Hazard Analysis on Permissible Wave Overtopping“) was also tested. Finally, the wind effects on overtopping are evaluated using tests performed with and without wind in the physical model of the Levante Breakwater (Málaga).