980 resultados para Archive of Underwater Imaging
Resumo:
Shipping list no.: 94-0038-P.
Resumo:
Final report; April 1978.
Resumo:
Final report; April 1978.
Resumo:
Includes bibliographies.
Resumo:
Mode of access: Internet.
Resumo:
Description based on: Vol. 77, no. 4 (May 1994); title from cover.
Resumo:
This review will discuss the use of manual grading scales, digital photography, and automated image analysis in the quantification of fundus changes caused by age-related macular disease. Digital imaging permits processing of images for enhancement, comparison, and feature quantification, and these techniques have been investigated for automated drusen analysis. The accuracy of automated analysis systems has been enhanced by the incorporation of interactive elements, such that the user is able to adjust the sensitivity of the system, or manually add and remove pixels. These methods capitalize on both computer and human image feature recognition and the advantage of computer-based methodologies for quantification. The histogram-based adaptive local thresholding system is able to extract useful information from the image without being affected by the presence of other structures. More recent developments involve compensation for fundus background reflectance, which has most recently been combined with the Otsu method of global thresholding. This method is reported to provide results comparable with manual stereo viewing. Developments in this area are likely to encourage wider use of automated techniques. This will make the grading of photographs easier and cheaper for clinicians and researchers. © 2007 Elsevier Inc. All rights reserved.
Resumo:
ACM Computing Classification System (1998): H.2.1, H.2.4, H.2.8, H.3.7, J.5.
Resumo:
The ability of systemically administered bacteria to target and replicate to high numbers within solid tumours is well established. Tumour localising bacteria can be exploited as biological vehicles for the delivery of nucleic acid, protein or therapeutic payloads to tumour sites and present researchers with a highly targeted and safe vehicle for tumour imaging and cancer therapy. This work aimed to utilise bacteria to activate imaging probes or prodrugs specifically within target tissue in order to facilitate the development of novel imaging and therapeutic strategies. The vast majority of existing bacterial-mediated cancer therapy strategies rely on the use of bacteria that have been genetically modified (GM) to express genes of interest. While these approaches have been shown to be effective in a preclinical setting, GM presents extra regulatory hurdles in a clinical context. Also, many strains of bacteria are not genetically tractably and hence cannot currently be engineered to express genes of interest. For this reason, the development of imaging and therapeutic systems that utilise unengineered bacteria for the activation of probes or drugs represents a significant improvement on the current gold standard. Endogenously expressed bacterial enzymes that are not found in mammalian cells can be used for the targeted activation of imaging probes or prodrugs whose activation is only achieved in the presence of these enzymes. Exploitation of the intrinsic enzymatic activity of bacteria allows the use of a wider range of bacteria and presents a more clinically relevant system than those that are currently in use. The nitroreductase (NTR) enzymes, found only in bacteria, represent one such option. Chapter 2 introduces the novel concept of utilising native bacterial NTRs for the targeted activation of the fluorophore CytoCy5S. Bacterial-mediated probe activation allowed for non-invasive fluorescence imaging of in vivo bacteria in models of infection and cancer. Chapter 3 extends the concept of using native bacterial enzymes to activate a novel luminescent, NTR activated probe. The use of luminescence based imaging improved the sensitivity of the system and provides researchers with a more accessible modality for preclinical imaging. It also represents an improvement over existing caged luciferin probe systems described to date. Chapter 4 focuses on the employment of endogenous bacterial enzymes for use in a therapeutic setting. Native bacterial enzymatic activity (including NTR enzymes) was shown to be capable of activating multiple prodrugs, in isolation and in combination, and eliciting therapeutic responses in murine models of cancer. Overall, the data presented in this thesis advance the fields of bacterial therapy and imaging and introduce novel strategies for disease diagnosis and treatment. These preclinical studies demonstrate potential for clinical translation in multiple fields of research and medicine.
Resumo:
FAPESP:95/02610
Resumo:
Preserving the cultural heritage of the performing arts raises difficult and sensitive issues, as each performance is unique by nature and the juxtaposition between the performers and the audience cannot be easily recorded. In this paper, we report on an experimental research project to preserve another aspect of the performing arts—the history of their rehearsals. We have specifically designed non-intrusive video recording and on-site documentation techniques to make this process transparent to the creative crew, and have developed a complete workflow to publish the recorded video data and their corresponding meta-data online as Open Data using state-of-the-art audio and video processing to maximize non-linear navigation and hypervideo linking. The resulting open archive is made publicly available to researchers and amateurs alike and offers a unique account of the inner workings of the worlds of theater and opera.