902 resultados para Antioxidants
Resumo:
The Mediterranean Diet concept was formulated during the sixties, in association with the food consumption pattern of Mediterranean areas that produced olive oil and shared common health styles. These areas, besides their own cultural and religious differences, share common food habits, such as: - The use of olive oil (supplier of monounsaturated fatty acids and antioxidants); - The abundant use of cereals, mainly under the form of excellent quality bread, flour and pasta (providing fibre and energy); - Large and variegate consumption of fruit (fresh and dried), nuts and vegetables (colourful, rich in fibre, antioxidants and other protective materials); - Abundant use of herbs and spices (rich in antioxidants and other protective materials); - Simple culinary methods, using short cooking times and low temperatures (which enhance the preservation of food nutritional and sensorial characteristics). The Mediterranean Diet reflects a set of characteristics that make it internationally recognized as a health promoter eating pattern, where the relation between monounsaturated and saturated fatty acids is highly advantageous for the former, fibre, vitamins and natural antioxidants intake is high, together with a low consumption of animal protein and salt. The obtained results show contents in protein, lipid and carbohydrates very adequate to the “DRI”; The relation between mono and saturated fatty acids (40:9) should be emphasised, together with the high fibre content. Protective nutrients show remarkable results, with a wide variety of vitamins and minerals, in particular Vitamin A, complex B vitamins, biotin, vit. E, folic acid, iron, manganese and selenium, that are widely recognised as important antioxidants and responsible for the good function of the immune system. In conclusion, tomato soup, consumed traditionally as a poor meal, shows to be a health promoter nutritionally complete recipe.
Resumo:
Essential oils are used in Cosmetic, Perfumery, Food and Pharmaceutical Industries as flavours and/or medicines. However, part of the essential oil components that remains in the distillation water (hydrosol or distillate water) has been less studied both in chemical and biological terms. This research concerns the antioxidant activity, measured through several methods, of Lavandula officinalis L., Origanum majorana L., Rosmarinus officinalis L., Salvia officinalis L. and Thymus vulgaris L., Cinnamomum verum J. Presl. and Syzygium aromaticum (L.) Merrill and Perry hydrosols. The ability of hydrosols to prevent oxidation was checked by two main methods: prevention of lipid peroxidation through the measurement of malonaldehyde produced after degradation of hydroperoxides; and ability for scavenging free radicals including hydroxyl and superoxide anion radicals. The S. aromaticum and T. vulgaris hydrosols, predominantly constituted by eugenol and carvacrol, respectively, were the most effective as antioxidants, except for scavenging superoxide anion radical. In this case, L. officinalis hydrosol in which linalool prevailed was a stronger antioxidant. The worst hydrosol as antioxidant was that of S. officinalis, independent on the method checked.
Resumo:
Tese de doutoramento, Farmácia (Toxicologia), Universidade de Lisboa, Faculdade de Farmácia, 2014
Resumo:
In this paper, it was evaluated the total antioxidant capacity (TAC) of beverages using an electrochemical biosensor. The biosensor consisted on the purine base (guanine or adenine) electro-immobilization on a glassy carbon electrode surface (GCE). Purine base damage was induced by the hydroxyl radical generated by Fenton-type reaction. Five antioxidants were applied to counteract the deleterious effects of the hydroxyl radical. The antioxidants used were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants have the ability to scavenger the hydroxyl radical and protect the guanine and adenine immobilized on the GCE surface. The interaction carried out between the purinebase immobilized and the free radical in the absence and presence of antioxidants was evaluated by means of changes in the guanine and adenine anodic peak obtained by square wave voltammetry (SWV). The results demonstrated that the purine-biosensors are suitable for rapid assessment of TAC in beverages.
Resumo:
Reactive oxygen species (ROS) are produced as a consequence of normal aerobic metabolism and are able to induce DNA oxidative damage. At the cellular level, the evaluation of the protective effect of antioxidants can be achieved by examining the integrity of the DNA nucleobases using electrochemical techniques. Herein, the use of an adenine-rich oligonucleotide (dA21) adsorbed on carbon paste electrodes for the assessment of the antioxidant capacity is proposed. The method was based on the partial damage of a DNA layer adsorbed on the electrode surface by OH• radicals generated by Fenton reaction and the subsequent electrochemical oxidation of the intact adenine bases to generate an oxidation product that was able to catalyze the oxidation of NADH. The presence of antioxidant compounds scavenged hydroxyl radicals leaving more adenines unoxidized, and thus, increasing the electrocatalytic current of NADHmeasured by differential pulse voltammetry (DPV). Using ascorbic acid (AA) as a model antioxidant species, the detection of as low as 50nMof AA in aqueous solution was possible. The protection efficiency was evaluated for several antioxidant compounds. The biosensor was applied to the determination of the total antioxidant capacity (TAC) in beverages.
Resumo:
In this paper, a biosensor based on a glassy carbon electrode (GCE) was used for the evaluation of the total antioxidant capacity (TAC) of flavours and flavoured waters. This biosensor was constructed by immobilising purine bases, guanine and adenine, on a GCE. Square wave voltammetry (SWV) was selected for the development of this methodology. Damage caused by the reactive oxygen species (ROS), superoxide radical (O2·−), generated by the xanthine/xanthine oxidase (XOD) system on the DNA-biosensor was evaluated. DNA-biosensor encountered with oxidative lesion when it was in contact with the O2·−. There was less oxidative damage when reactive antioxidants were added. The antioxidants used in this work were ascorbic acid, gallic acid, caffeic acid, coumaric acid and resveratrol. These antioxidants are capable of scavenging the superoxide radical and therefore protect the purine bases immobilized on the GCE surface. The results demonstrated that the DNA-based biosensor is suitable for the rapid assess of TAC in beverages.
Resumo:
The antioxidant activity and phenolic composition of brewer's spent grain (BSG) extracts obtained by microwave-assisted extraction from twomalt types (light and darkmalts) were investigated. The total phenolic content (TPC) and antioxidant activity among the light BSG extracts (pilsen, melano, melano 80 and carared)were significantly different (p b 0.05) compared to dark extracts (chocolate and black types), with the pilsen BSG showing higher TPC (20 ± 1 mgGAE/g dry BSG). In addition, the antioxidant activity assessed by 2,2-diphenyl- 1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and deoxyribose assays decreased as a result of increasing kilning temperatures in the following order: pilsen N melano N melano 80 N carared N chocolate N black. HPLC-DAD/ESI-MS/MS analysis indicated the presence of phenolic acids, such as ferulic, p-coumaric and syringic acids, as well as several isomeric ferulate dehydrodimers and one dehydrotrimer. Chocolate and black extracts, obtained frommalts submitted to the highest kilning temperatures, showed the lowest levels of ferulic and p-coumaric acids. These results suggested that BSG extracts from pilsen malt might be used as an inexpensive and good natural source of antioxidants with potential interest for the food, pharmaceutical and/or cosmetic industries after purification.
Resumo:
Hydroxycinnamic acids (HCAs) are important phytochemicals possessing significant biological properties. Several investigators have studied in vitro antioxidant activity of HCAs in detail. In this review, we have gathered the studies focused on the structure-activity relationships (SARs) of these compounds that have used medicinal chemistry to generate more potent antioxidant molecules. Most of the reports indicated that the presence of an unsaturated bond on the side chain of HCAs is vital to their activity. The structural features that were reported to be of importance to the antioxidant activity were categorized as follows: modifications of the aromatic ring, which include alterations in the number and position of hydroxy groups and insertion of electron donating or withdrawing moieties as well as modifications of the carboxylic function that include esterification and amidation process. Furthermore, reports that have addressed the influence of physicochemical properties including redox potential, lipid solubility and dissociation constant on the antioxidant activity were also summarized. Finally, the pro-oxidant effect of HCAs in some test systems was addressed. Most of the investigations concluded that the presence of ortho-dihydroxy phenyl group (catechol moiety) is of significant importance to the antioxidant activity, while, the presence of three hydroxy groups does not necessarily improve the activity. Optimization of the structure of molecular leads is an important task of modern medicinal chemistry and its accomplishment relies on the careful assessment of SARs. SAR studies on HCAs can identify the most successful antioxidants that could be useful for management of oxidative stress-related diseases.
Resumo:
The effect of peel and seed removal, two commonly practiced procedures either at home or by the processing industry, on the physicochemical properties, bioactive compounds contents and antioxidant capacity of tomato fruits of four typical Portuguese cultivars (cereja, chucha, rama and redondo) were appraised. Both procedures caused significant nutritional and antioxidant activity losses in fruits of every cultivar. In general, peeling was more detrimental, since it caused a higher decrease in lycopene, bcarotene, ascorbic acid and phenolics contents (averages of 71%, 50%, 14%, and 32%, respectively) and significantly lowered the antioxidant capacity of the fruits (8% and 10%, using DPPH. and b-carotene linoleate model assays, correspondingly). Although seeds removal favored the increase of both color and sweetness, some bioactive compounds (11% of carotenoids and 24% of phenolics) as well as antioxidant capacity (5%) were loss. The studied cultivars were differently influenced by these procedures. The fruits most affected by peeling were those from redondo cultivar (-66% lycopene, -44% b-carotene, -26% ascorbic acid and -38% phenolics). Seeds removal, in turn, was more injurious for cereja tomatoes (-10% lycopene, -38% b-carotene, -25% ascorbic acid and -63% phenolics). Comparatively with the remaining ones, the rama fruits were less affected by the trimming procedures.
Resumo:
Mestrado em Engenharia Química – Ramo Optimização Energética na Indústria Química
Resumo:
Trabalho de Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
O presente trabalho tem como objetivo o cultivo da microalga Chlorella zofingiensis, e a avaliação da sua potencial aplicação na produção de biodiesel e de produtos de valor acrescentado, de entre os quais se destacam os antioxidantes. Com o intuito da produção de biocombustível é necessário efetuar o cultivo da microalga num volume que permita a obtenção de elevada quantidade de biomassa para a concretização do trabalho. Além deste biocombustível, existe ainda a possibilidade de valorização de alguns produtos com valor comercial, como é o caso da astaxantina, a saber na área farmacêutica, alimentar ou até mesmo cosmética. O cultivo da microalga foi feito em meio Bold’s Basal Medium (BBM), inicialmente em matrazes de 5 L e, quando se obteve uma cultura suficientemente densa, inocularam-se fotobiorreatores de 50 L. Conseguiu-se atingir uma concentração máxima de 0,76 g/L, no reator de 5 L, após cerca de 6 semanas de ensaio. Por sua vez, em fotobiorreatores de 50 L, a concentração máxima obtida foi de 0,4 g/L, após 4 semanas de ensaio. Nestas culturas foi possível obter-se uma percentagem lipídica de 7 %, apresentado concentração de pigmentos por litro de cultura na ordem dos 10 mg/L, 4 mg/L e 2 mg/L de clorofila a, clorofila b e carotenoides totais, respetivamente. Com esta percentagem lipídica recuperaram-se 400 mg de óleo, obtendo-se posteriormente 280 mg de biodiesel. Pela análise à amostra de biodiesel obtida foi possível obter o perfil lipídico desta microalga, quando cultivada em meio BBM, sendo 41% de ácido palmítico (C16:0), 9% de ácido esteárico (C18:0), 27% de ácido oleico (C18:1) e 23% de ácido linoleico (C18:2). Os resultados obtidos mostram que a Chlorella zofingiensis é uma microalga com interesse potencial para a produção de clorofila e carotenóides, mas não para o óleo para a produção de biodiesel.
Resumo:
The concept that optic nerve fiber loss might be reduced by neuroprotection arose in the mid 1990s. The subsequent research effort, focused mainly on rodent models, has not yet transformed into a successful clinical trial, but provides mechanistic understanding of retinal ganglion cell death and points to potential therapeutic strategies. This review highlights advances made over the last year. In excitotoxicity and axotomy models retinal ganglion cell death has been shown to result from a complex interaction between retinal neurons and Müller glia, which release toxic molecules including tumor necrosis factor alpha. This counteracts neuroprotection by neurotrophins such as nerve growth factor, which bind to p75NTR receptors on Müller glia stimulating the toxic release. Another negative effect against neurotrophin-mediated protection involves the action of LINGO-1 at trkB brain-derived neurotrophic factor (BDNF) receptors, and BDNF neuroprotection is enhanced by an antagonist to LINGO-1. As an alternative to pharmacotherapy, retinal defences can be stimulated by exposure to infrared radiation. The mechanisms involved in glaucoma and other optic nerve disorders are being clarified in rodent models, focusing on retrograde degeneration following axonal damage, excitotoxicity and inflammatory/autoimmune mechanisms. Neuroprotective strategies are being refined in the light of the mechanistic understanding.
Resumo:
An impaired glutathione (GSH) synthesis was observed in several multifactorial diseases, including schizophrenia and myocardial infarction. Genetic studies revealed an association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the catalytic subunit (GCLC) of the glutamate cysteine ligase (GCL). Disease-associated genotypes of this polymorphism correlated with a decrease in GCLC protein expression, GCL activity and GSH content. To clarify consequences of a decreased GCL activity at the proteome level, three schizophrenia patients and three controls have been selected based on the GCLC GAG TNR polymorphism. Fibroblast cultures were obtained by skin biopsy and were challenged with tert-butylhydroquinone (t-BHQ), a substance known to induce oxidative stress. Proteome changes were analyzed by two dimensional gel electrophoresis (2-DE) and results revealed 10 spots that were upregulated in patients following t-BHQ treatment, but not in controls. Nine corresponding proteins could be identified by MALDI mass spectrometry and these proteins are involved in various cellular functions, including energy metabolism, oxidative stress response, and cytoskeletal reorganization. In conclusion, skin fibroblasts of subjects with an impaired GSH synthesis showed an altered proteome reaction in response to oxidative stress. Furthermore, the study corroborates the use of fibroblasts as an additional mean to study vulnerability factors of psychiatric diseases.
Resumo:
Oxidative stress, determined by the balance between the production of damaging reactive oxygen species (ROS) and antioxidant defences, is hypothesized to play an important role in shaping the cost of reproduction and life history trade-offs. To test this hypothesis, we manipulated reproductive effort in 94 breeding pairs of tawny owls (Strix aluco) to investigate the sex- and melanism-specific effects on markers of oxidative stress in red blood cells (RBCs). This colour polymorphic bird species shows sex-specific division of labour and melanism-specific history strategies. Brood sizes at hatching were experimentally enlarged or reduced to increase or decrease reproductive effort, respectively. We obtained an integrative measure of the oxidative balance by measuring ROS production by RBCs, intracellular antioxidant glutathione levels and membrane resistance to ROS. We found that light melanic males (the sex undertaking offspring food provisioning) produced more ROS than darker conspecifics, but only when rearing an enlarged brood. In both sexes, light melanic individuals had also a larger pool of intracellular antioxidant glutathione than darker owls under relaxed reproductive conditions (i.e. reduced brood), but not when investing substantial effort in current reproduction (enlarged brood). Finally, resistance to oxidative stress was differently affected by the brood size manipulation experiment in males and females independently of their plumage coloration. Altogether, our results support the hypothesis that reproductive effort can alter the oxidative balance in a sex- and colour-specific way. This further emphasizes the close link between melanin-based coloration and life history strategies.