949 resultados para Anti-inflammatory effect
Resumo:
Background and objective: Prescribers in rural and remote locations perceive that there are different influences on their prescribing compared with those experienced by urban prescribers. The aim of this study was to compare the motivations and perceived influences on general practitioners (GPs) when prescribing COX-2 inhibitors rather than conventional non-steroidal anti-inflammatory drugs (NSAIDs) between rural and urban-based GPs in Queensland, Australia. Methods: A questionnaire was administered to two geographically distinct groups of GPs, one urban (n = 67) and one rural (n = 67), investigating the reasons that the GP would prescribe a COX-2 inhibitor rather than a conventional NSAID or vice versa and also focusing on patients requesting a prescription for a COX-2 inhibitor. Results and discussion: A 51% response rate (n = 68) was achieved. The difference between the rural and the urban GPs was that the urban GPs were more likely to perceive that they were influenced to prescribe COX-2 inhibitors by their patients' knowledge of these new (at the time) drugs. GPs in both the rural and urban areas perceived the COX-2 selective inhibitors to be safer than conventional NSAIDs, and that there was little difference in terms of efficacy between the two drug classes. However, GPs from both of the study areas stated that conventional NSAIDs were preferred over COX-2 selective inhibitors, primarily due to their expense, if their patients were not at risk for developing a GI bleed. Conclusion: The motivations and perceived influences to prescribe a COX-2 inhibitor in rural and in urban areas of Queensland, Australia were very similar. Almost all surveyed GPs in rural and urban areas had patients request a prescription, or enquire about the COX-2 inhibitors. Urban GPs were more likely to feel pressured to prescribe a COX-2 inhibitor than their rural counterparts, agreeing with other research which found that patient pressure to prescribe appears to be greater in urban general practice.
Why are consumers with heart failure still receiving non-steroidal anti-inflammatory drugs (NSAIDS)?
Resumo:
1. The mechanism of action by which methotrexate (MTX) exerts its anti-inflammatory and immunosuppressive effects remains unclear. The aim of this study is to investigate the hypothesis that MTX exerts these effects via the production of reactive oxygen species (ROS). 2. Addition of MTX (100 nM-10 μM) to U937 monocytes induced a time and dose dependent increase in cytosolic peroxide [peroxide] cyt from 6-16 h. MTX also caused corresponding monocyte growth arrest, which was inhibited (P<0.05) by pre-treatment with N-acetylcysteine (NAC; 10 mM) or glutathione (GSH; 10 mM). In contrast, MTX induction of [peroxide] cyt in Jurkat T cells was more rapid (4 h; P<0.05), but was associated with significant apoptosis at 16 h at all doses tested (P<0.05) and was significantly inhibited by NAC or GSH (P<0.05). 3. MTX treatment of monocytes (10 nM-10 μM) for 16 h significantly reduced total GSH levels (P<0.05) independently of dose (P>0.05). However in T-cells, GSH levels were significantly elevated following 30 nM MTX treatment (P<0.05) but reduced by doses exceeding 1 μM compared to controls (P<0.05). 4. MTX treatment significantly reduced monocyte adhesion to 5 h and 24 h LPS (1 μg ml -1) activated human umbilical vein endothelial cells (HUVEC; P<0.05) but not to resting HUVEC. Pre-treatment with GSH prevented MTX-induced reduction in adhesion. 5. In conclusion, ROS generation by MTX is important for cytostasis in monocytes and cytotoxicity T-cells. Furthermore, MTX caused a reduction in monocyte adhesion to endothelial cells, where the mechanism of MTX action requires the production of ROS. Therefore its clinical efficacy can be attributed to multiple targets.
Resumo:
Minocycline possesses anti-inflammatory properties independently of its antibiotic activity although the underlying molecular mechanisms are unclear. Lipopolysaccharide (LPS)-induced cytokines and pro-inflammatory protein expression are reduced by minocycline in cultured macrophages. Here, we tested a range of clinically important tetracycline compounds (oxytetracycline, doxycycline, minocycline and tigecycline) and showed that they all inhibited LPS-induced nitric oxide production. We made the novel finding that tigecycline inhibited LPS-induced nitric oxide production to a greater extent than the other tetracycline compounds tested. To identify potential targets for minocycline, we assessed alterations in the macrophage proteome induced by LPS in the presence or absence of a minocycline pre-treatment using 2-DE and nanoLC-MS. We found a number of proteins, mainly involved in cellular metabolism (ATP synthase ß-subunit and aldose reductase) or stress response (heat shock proteins), which were altered in expression in response to LPS, some of which were restored, at least in part, by minocycline. This is the first study to document proteomic changes induced by minocycline. The observation that minocycline inhibits some, but not all, of the LPS-induced proteomic changes shows that minocycline specifically affects some signalling pathways and does not completely inhibit macrophage activation.
Resumo:
For six decades tetracyclines have been successfully used for their broad spectrum antibiotic effects. However, non-antibiotic effects of tetracyclines have been reported. The anti-inflammatory effects of tetracycline drugs have been investigated in the context of a range of inflammatory diseases including sepsis and a number of neurodegenerative diseases. This thesis investigates the effects of a range of clinically important tetracyclines (oxytetracycline, doxycycline, minocycline and tigecycline) on the ability of the J774.2 cell line to produce nitric oxide when stimulated with the bacterial cell wall component, LPS. The proteome of J774.2 cells was analysed in response to LPS stimulation (1 µg/ml) with and without prior treatment with minocycline (50µg/ml), this allows the unbiased analysis of the cellular proteome in response to minocycline and LPS, protein spots of interest were excised and identified by nano-electrospray ionisation-linear ion trap mass spectroscopy. All of the tetracyclines that were investigated inhibited LPS-induced nitric oxide production in a dose dependent manner and this was due to the inhibition of inducible nitric oxide synthase expression. This is the first report to show that tigecycline inhibits inducible nitric oxide expression and nitric oxide production. Using two-dimensional gel electrophoresis and total protein staining eleven proteins were identified as being modulated by LPS. Of these eleven proteins; expression of some, but not all was modulated when the cells received a prior treatment with minocycline suggesting that minocycline does not completely block LPS-induced macrophage activation but probably specifically acts on particular inflammatory signaling pathways in macrophages. Three protein spots with a similar molecular weight but different pI values identified in this proteomic study were identified as ATP synthase ß chain. These different protein spots probably correspond to different phosphorylation states of the protein, suggesting that minocycline affects the balance of protein kinase and protein phosphatase activity in the immune response.