494 resultados para Antenas microstrip
Resumo:
Numerical simulations are used to study the electromagnetic scattering from phase agile microstrip reflectarray cells which exploit the voltage controlled dielectric anisotropy property of nematic state liquid crystals (LC). In the computer model two arrays of equal size elements constructed on a 15?m thick tuneable LC layer were designed to operate at centre frequencies of 102 GHz and 130 GHz. Micromachining processes based on the metallization of quartz/silicon wafers and an industry compatible LCD packaging technique were employed to fabricate the grounded periodic structures. The loss and phase of the reflected signals were measured using a quasi-optical test bench with the reflectarray cells inserted at the beam waist of the imaged Gaussian beam, thus eliminating some of the major problems associated with traditional free-space characterisation at these frequencies. By applying a low frequency AC bias voltage of 10 V, a 165o phase shift with a loss 4.5 dB-6.4 dB at 102 GHz and 130o phase shift with a loss variation between 4.3 dB – 7 dB at 130 GHz was obtained. The experimental results are shown to be in close agreement with the computer model.
Resumo:
Recent advances in the development of 2D microstrip detectors open up new possibilities for hard x-ray spectroscopy, in particular for polarization studies. These detectors make ideal Compton polarimeters, which enable us to study precisely the polarization of hard x-rays. Here, we present recent results from measurements of Radiative Electron Capture into the K-shell of highly-charged uranium ions. The experiments were performed with a novel 2D Si(Li) Compton polarimeter at the Experimental Storage Ring at GSI. Stored and cooled beams of U91+ and U92+ ions, with kinetic energies of 43 MeV/u and 96 MeV/u respectively, were crossed with a hydrogen gasjet. The preliminary data analysis shows x-rays from the K-REC process, emitted perpendicularly to the ion beam, to be strongly linearly polarized.
Resumo:
Planar periodic metallic arrays behave as artificial magnetic conductor (AMC) surfaces when placed on a grounded dielectric substrate and they introduce a zero degrees reflection phase shift to incident waves. In this paper the AMC operation of single-layer arrays without vias is studied using a resonant cavity model and a new application to high-gain printed antennas is presented. A ray analysis is employed in order to give physical insight into the performance of AMCs and derive design guidelines. The bandwidth and center frequency of AMC surfaces are investigated using full-wave analysis and the qualitative predictions of the ray model are validated. Planar AMC surfaces are used for the first time as the ground plane in a high-gain microstrip patch antenna with a partially reflective surface as superstrate. A significant reduction of the antenna profile is achieved. A ray theory approach is employed in order to describe the functioning of the antenna and to predict the existence of quarter wavelength resonant cavities.
Resumo:
A planar artificial magnetic conductor (AMC) ground plane is proposed as a means to reduce the profile of a highly directive resonant cavity antenna. The structure is formed by a printed microstrip patch antenna and a superimposed partially reflective surface. The antenna profile is reduced to approximately half by virtue of employing the AMC ground plane. A ray theory model is used to qualitatively describe the functioning of the antenna and theoretically predict the existence of quarter wavelength resonant cavities.
Resumo:
In this communication we present a novel polarization-agile microstrip antenna design. To dynamically change the polarization state, the radiating patch is fed by a tunable quasi-lumped coupler. The whole structure can be dynamically altered to radiate electromagnetic waves with vertical linear, horizontal linear, right-handed circular or left-handed circular polarization simply by changing the operating mode of the quasi-lumped coupler. Due to its topology the coupler is simply reconfigured by switching the bias of two varactor diodes via a very simple DC bias circuitry: no additional capacitors or inductors are required. A prototype is fabricated with a 0.762-mm-thick upper layer substrate for the radiating element and a 0.130-mm-thick layer substrate for the coupler circuit, both with the same dielectric material relative permittivity of 2.22. The simulated and measured scattering parameters, the axial ratio in circular radiation-mode and the cross-polarization level in linear mode, the gain and the radiation patterns are presented. The agile polarization capabilities of this new antenna, as demonstrated in this communication, underscore its suitability for modern wireless communications in a multi-path propagation environment.
Resumo:
In this paper, the on-body performance of a range of wearable antennas was investigated by measuring vertical bar S-21 vertical bar path gain between two devices mounted on tissue-equivalent numerical and experimental phantoms, representative of human muscle tissue at 2.45 GHz. In particular, the study focused on the performance of a compact higher mode microstrip patch antenna (HMMPA) with a profile as low as lambda/20. The 5- and 10-mm-high HMMPA prototypes had an impedance bandwidth of 6.7% and 8.6%, respectively, sufficient for the operating requirements of the 2.45-GHz industrial, scientific, and medical (ISM) band and both antennas offered 11-dB higher path gain compared to a fundamental-mode microstrip patch antenna. It was also dernonstrated that a 7-dB improvement in path gain can be obtained for a fundamental-mode patch through the addition of a shortening wall. Notably, on-body HMMPA performance was comparable to a quarter wave monopole antenna on the same size of ground-plane, mounted normal to the tissue surface, indicating that the low-profile and physically more robust antenna is a promising solution for bodyworn antenna applications.
Resumo:
This paper presents the results of experimental study of passive intermodulation (PIM) generation in microstrip lines with U-shaped and meandered strips, impedance tapers, and strips with the profiled edges. It is shown that the geometrical discontinuities in printed circuits may have a noticeable impact on distributed PIM generation even when their effect is indiscernible in the linear regime measurements. A consistent interpretation of the observed phenomena has been proposed on the basis of the phase synchronism in the four-wave mixing process. The results of this study reveal new features of PIM production important for the design and characterization of low-PIM microstrip circuits. © 2010 IEEE.
Resumo:
A simple V-band radio IQ receiver architecture based around a six-port monolithic microwave integrated circuit (MMIC) is presented. The receiver assembly is designed to cover the 57-65 GHz broadband wireless communication system frequency allocation. The receiver that has an integral 10 dB microstrip antenna consumes 120 mW of dc power and occupies an area of 23 mm x 16 mm. The receiver can be used in heterodyne or in homodyne mode and has the capacity to demodulate quadrature amplitude modulation (QAM), binary phase shift keying (BPSK)/quadrature phase shift keying (QPSK)/offset quadrature phase shift keying (OQPSK). At 60 GHz the receiver can operate over 10 m range for transmitter effective isotropic radiated power (EIRP) of 20 dBm.
Resumo:
A simple design for a low-profile high-gain planar antenna has been presented in the letter. The antenna has the realized gain between 9 and 11 dBi and the return loss better than 10 dB over the 5.6-6.3-GHz frequency band, i.e. 11% bandwidth. A numerical study highlighting effects of key geometrical parameters on the gain and return loss of the antenna has been performed. It has been shown as well that the presented antenna occupies area 20% smaller than a conventional microstrip patch antenna array with a similar gain.
Resumo:
A comprehensive experimental study was performed to identify and discriminate mechanisms contributing to passive intermodulation (PIM) in microstrip transmission lines. The effects of strip length and width, and substrate materials on PIM performance of printed lines were investigated in the GSM900, DCS1800 and UMTS frequency bands. The major features of the experiment design, sample preparation and test setup are discussed in detail. The measurement results have demonstrated that the PIM level cumulatively grows on the longer microstrip lines and decreases on wider strips and, thus, indicated that the distributed resistive nonlinearity of the printed traces represents the dominant mechanism of intermodulation generation in the printed lines on PTFE-based substrates. © 2009 The Institution of Engineering and Technology.
Resumo:
The phenomenological mechanisms of passive intermodulation (PIM) in printed lines have been explored by mapping intermodulation products generated by the two-tone traveling waves in microstrip lines. Near-field probing based upon a commercial PIM analyzer has been employed for identification of the PIM sources in printed lines. The results of extensive near-field probing provide the direct experimental evidences of cumulative growth of the intermodulation products in the matched uniform microstrip lines and reveal the fundamental role of the nonlinear scattering by the lumped nonlinear inclusions in the intermodulation production. The distributed nature of the PIM generation in microstrip lines has been conclusively demonstrated and comprehensively described in terms of the four-wave mixing process that proved to be fully consistent with the results of experimental observations of third-order PIM products on the matched and mismatched microstrip lines. © 2006 IEEE.
Resumo:
An experimental investigation of the effect of conductor-to-substrate interface on distributed passive intermodulation (PIM) generation in printed microstrip lines has been undertaken using the custom-designed microwave laminates with removed surface bonding layers and with the commercial adhesion promotion applied to the conductor underside. The study of long-term stability of PIM performance of the printed circuits is reported for the first time. The comprehensive measurement results, observations of the selfimprovement of the PIM performance and the effect of panel bending on PIM generation in printed boards with different finishing are presented. A consistent physical interpretation of the observed phenomena is proposed. The results of this study provide new important considerations for the design and characterisation of low-PIM printed circuits.
Resumo:
Novel V-band substrate integrated waveguide (SIW) filters have been presented. Design procedures for the filters synthesis and mechanisms providing quasi-elliptic response have been explained. The insertion loss of the filters has been measured below 2 dB with microstrip-to-SIW transitions being included.
Resumo:
A new type of broadband retrodirective array, which has been constructed using a microstrip Rotman lens, is presented. Automatic tracking of targets is obtained by exploiting the conjugate phase response of the beamforming network which is exhibited when the input ports are terminated with either open or short circuits. In addition, the true time-delay property of the Rotman lens gives broadband operation of the self-tracking array when used in conjunction with Vivaldi antennas. The simulated and measured bistatic and monostatic radar cross-section (RCS) patterns of a structure consisting of 13 beamports and 12 array ports are presented at frequencies in the range 8-12 GHz. Significantly enhanced RCS within the scan coverage ±40° is demonstrated by comparing the retrodirective behavior of a 12-element Vivaldi array terminated with and without the Rotman lens. © 2006 IEEE.
Resumo:
Microstrip patch antennas are strong candidates for use in many wireless communications applications. This paper proposes the use of a patch antenna with two U-shaped slots to achieve dual band operation. A thick substrate helps broaden the individual bandwidths. The antenna is designed based on extensive IE3D simulation studies. A prototype antenna is fabricated and experimentally verified for the required performance.