973 resultados para Antarctica
Resumo:
In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30 km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed. The derived ice flow velocity for Vostok Station is 2.00 m/a ± 0.01 m/a. Along the flowline of Vostok Station an extension rate of about 10**-5/a (equivalent to 1 cm/km/a) was determined. This significant velocity gradient results in a new estimate of 28700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4 mm/a along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.
Resumo:
George V Land (Antarctica) includes the boundary between Late Archean-Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross-Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar-39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar-39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ~1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (~180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro-Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar-39Ar ages from ~530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.
Resumo:
Subgrain boundaries revealed as shallow sublimation grooves on ice sample surfaces are a direct and easily observable feature of intracrystalline deformation and recrystallization. Statistical data obtained from the EPICA Dronning Maud Land (EDML) deep ice core drilled in East Antarctica cannot detect a depth region of increased subgrain-boundary formation. Grain-boundary morphologies show a strong influence of internal strain energy on the microstructure at all depths. The data do not support the classical view of a change of dominating recrystallization regimes with depth. Three major types of subgrain boundaries, reflecting high mechanical anisotropy, are specified in combination with crystal-orientation analysis.
Resumo:
The clay mineral assemblages of upper Eocene to lower Miocene sediments recovered at the CIROS-1 and MSSTS-1 drill sites on the McMurdo Sound shelf, Antarctica, were analyzed in order to reconstruct the Cenozoic Antarctic paleoclimate and ice dynamics. The assemblages are dominated by smectite and illite, with minor amounts of chlorite and kaolinite. The highest smectite amounts and best smectite crystallinities occur in the upper Eocene part of CIROS-1, below 425-445 mbsf. They indicate that during their deposition, chemical weathering conditions prevailed on the nearby continent. Large parts of East Antarctica were probably ice-free at that time, but some glaciers reached the sea and contributed to the glaciomarine sedimentation. In contrast, only minor total amounts of smectite are present in Oligocene and younger sediments due to the shift to mainly physical weathering on an ice-covered Antarctic continent. However, relative smectite percentages rise to more than 60% during two late Oligocene intervals (ca. 27.5-26.2 and 25.0-24.5 Ma) and during one early Miocene interval starting at ca. 23.3 Ma. These intervals are characterized by ice masses coming probably from the south, where volcanic rocks acted as a source, as also indicated by the composition of the sand and gravel fractions. During the other intervals, the ice came from the west, where the physical erosion of basement rocks and sedimentary rocks of the Beacon Supergroup in the Transantarctic Mountains provided high illite concentrations. Because the two drill sites are only 4 km apart, their clay mineral records can be correlated. This led to a new interpretation of the Oligocene paleomagnetic data of the MSSTS-1 site and to a more detailed lithostratigraphic correlation of the Miocene parts of the cores.
Resumo:
New maps of free-air and the Bouguer gravity anomalies on the Weddell Sea sector (70-81° S, 6-75° W) of Antarctica are presented. These maps are based on the first computer compilation of available gravity data collected by ''Sevmorgeologia'' in 1976-89 in the southern Weddell Sea and adjacent coasts of western Dronning Maud Land (WDML) and Coats Land. The accomplished gravity studies comprise airborne observations with a line spacing of about 20 km and conventional measurements at over-the-ice points, which were spaced at 10-30 km and supplemented by seismic soundings. Hence, anomalies on the maps represent mainly large-scale and deep crustal features. The dominant feature in free-air gravity map is a large dipolar gravity anomaly stretching along the continental margin. Following the major grain of seabed morphology this shelf-edge/slope anomaly (SESA) is clearly divided into three segments characterized by diverse anomaly amplitudes, wavelengths and trends. They are associated with continental margins of different geotectonic provinces of Antarctica surrounding the Weddell Sea. Apparent distinctions in the SESA signatures are interpreted as the gravity expression of tectonic, deep crustal structure segmentation of the continental margin. The prominent gravity highs (100-140 mGal) of the shelf edge anomaly mapped along WDML are assumed to represent high-density mantle injections intruded into the middle/lower crust during initial rifting of continental breakup. Enlarged wavelengths and diminished amplitudes of the gravity anomaly westwards, along the Weddell Sea embayment (WSE) margin, reflect a widening of the continental slope and a significant increase in thickness of underlying sediment strata. Low amplitude, negative free-air anomalies in the Filchner-Ronne Ice Shelves (FRIS) contrast sharply with the dominating positive anomalies offshore. This indicates a greater sedimentary thickness of the basin in this area. Crustal response to the enlarged sediment load is impressed in mostly positive features of the Bouguer gravity field observed here. Two pronounced positive Bouguer anomalies of 50-70 mGal and an average widths of 200 km dominate the Weddell Sea embayment margins towards the Antarctic Peninsula and the East Antarctic craton. They correlate well with very deep seabed troughs (> 1000 m below sea level). The gravity highs are most likely caused by a shallow upper mantle underneath graben-rift structures evolved at the margins of the WSE basin. A regional zone (> 100 km in width) of the prominent Bouguer and free-air negative anomalies (-40 to -60 mGal) adjacent Coats Land to the north of the ice shelf edge may indicate the presence of the thick old cratonic crust far offshore beneath the Weddell Sea Embayment.
Resumo:
During two Antarctic field seasons, western Dronning Maud Land and eastern Coats Land were covered by airborne radio-echo sounding surveys, conducted in combination with magnetic and gravity measurements along the 50 NW-SE-directed tracks, totaling about 11200 km and spaced 20 km apart. The data were collected in analogue form and then processed to compile ice surface, ice thickness and bedrock topography maps in I : 2 500 000 scale which gave a new and/or more detailed information on the region than previous compilations. The maps show that western Dronning Maud Land is dominated by a large mountainous area with altitudes up to 2800 m including rock outcrops of Annandagstoppane, Borgmassivet, Kirwanveggen and Heimefrontfjella. Upland terrains of Vestfjella and Mannefallknausane have an isolated position and are surrounded by a plain with bedrock depressions of 600 m deep below sea level. A narrow strip of north-eastern Coats Land studied by radio-echo soundings exhibits a smooth subice relief with altitudes close to sea level. The structural style of bedrock topography was mostly determined by extensional tectonics.