985 resultados para Analisi limite muratura algoritmo collasso sismica
Resumo:
O presente trabalho tem como objetivo avaliar a capacidade preditiva de modelos econométricos de séries de tempo baseados em indicadores macroeconômicos na previsão da inflação brasileira (IPCA). Os modelos serão ajustados utilizando dados dentro da amostra e suas projeções ex-post serão acumuladas de um a doze meses à frente. As previsões serão comparadas a de modelos univariados como autoregressivo de primeira ordem - AR(1) - que nesse estudo será o benchmark escolhido. O período da amostra vai de janeiro de 2000 até agosto de 2015 para ajuste dos modelos e posterior avaliação. Ao todo foram avaliadas 1170 diferentes variáveis econômicas a cada período a ser projetado, procurando o melhor conjunto preditores para cada ponto no tempo. Utilizou-se o algoritmo Autometrics para a seleção de modelos. A comparação dos modelos foi feita através do Model Confidence Set desenvolvido por Hansen, Lunde e Nason (2010). Os resultados obtidos nesse ensaio apontam evidências de ganhos de desempenho dos modelos multivariados para períodos posteriores a 1 passo à frente.
Resumo:
A situação conhecida como “Zero Lower Bound” ocorre quando a taxa de juros de curto prazo é muito baixa e os bancos centrais perdem seu principal instrumento de política monetária para estimular a atividade econômica. Nestas condições, políticas não convencionais são utilizadas como a expansão monetária (QE) e comunicados ao mercado sobre as intenções do banco central em um horizonte maior de tempo. O Japão enfrenta esta situação desde a década de 90 e tem utilizado largamente ambas. Após uma revisão da literatura a respeito, este trabalho investiga a eficácia dos QEs praticados pelo BOJ com os dados disponíveis através de autoregressão de vetores e conclui que não há evidência estatística sobre os resultados desejados. Dada a inabilidade de melhorar o crescimento econômico com inflação dentro de uma meta, sugere que trabalhos que conclusões robustas estatisticamente devem estar sujeitos à crítica de Lucas
Resumo:
No Brasil os emissores de cartão de crédito realizam periodicamente aumento de limites do cartão, para clientes que possuem bom comportamento creditício. O objetivo do nosso estudo é analisar os efeitos desse aumento no uso que o cliente tem do seu cartão, com a hipótese de que o cliente passará a utilizar mais o cartão, seja por anchoring, visto que ele se importa em sempre ter uma reserva de limite para eventuais emergências, ou por se sentir priorizado pelo banco, ou até mesmo por demanda reprimida de crédito. Para isso, analisamos uma base de aumento de limite, com grupo de teste e controle, de clientes selecionados para aumento de limite, e observamos que o aumento fez com que os clientes aumentassem seus gastos, seu saldo devedor, passaram a fazer mais transações e timidamente passaram a rotativar. Após observar esses efeitos, dividimos o grupo em dois: Clientes com utilização média menor ou igual a 50% antes da ação e clientes com utilização média maior que 50% antes da ação. Para os clientes do teste dos dois grupos observamos um aumento no gasto mensal, no número de transações mensal, no saldo devedor e no número de clientes rotativando. Essa diferença foi maior no grupo de maior utilização pré tratamento, mas mesmo clientes que inicialmente pareciam ter uma demanda de crédito menor, mostraram-se sensíveis a utilizar mais devido ao aumento do limite.
Algoritmo genético para seleção de contingências na análise estática de segurança em redes elétricas
Resumo:
O presente trabalho analisa soluções de controlo não-linear baseadas em Redes Neuronais e apresenta a sua aplicação a um caso prático, desde o algoritmo de treino até à implementação física em hardware. O estudo inicial do estado da arte da utilização das Redes Neuronais para o controlo leva à proposta de soluções iterativas para a definição da arquitectura das mesmas e para o estudo das técnicas de Regularização e Paragem de Treino Antecipada, através dos Algoritmos Genéticos e à proposta de uma forma de validação dos modelos obtidos. Ao longo da tese são utilizadas quatro malhas para o controlo baseado em modelos, uma das quais uma contribuição original, e é implementado um processo de identificação on-line, tendo por base o algoritmo de treino Levenberg-Marquardt e a técnica de Paragem de Treino Antecipada que permite o controlo de um sistema, sem necessidade de recorrer ao conhecimento prévio das suas características. O trabalho é finalizado com um estudo do hardware comercial disponível para a implementação de Redes Neuronais e com o desenvolvimento de uma solução de hardware utilizando uma FPGA. De referir que o trabalho prático de teste das soluções apresentadas é realizado com dados reais provenientes de um forno eléctrico de escala reduzida.
Resumo:
With the growth of energy consumption worldwide, conventional reservoirs, the reservoirs called "easy exploration and production" are not meeting the global energy demand. This has led many researchers to develop projects that will address these needs, companies in the oil sector has invested in techniques that helping in locating and drilling wells. One of the techniques employed in oil exploration process is the reverse time migration (RTM), in English, Reverse Time Migration, which is a method of seismic imaging that produces excellent image of the subsurface. It is algorithm based in calculation on the wave equation. RTM is considered one of the most advanced seismic imaging techniques. The economic value of the oil reserves that require RTM to be localized is very high, this means that the development of these algorithms becomes a competitive differentiator for companies seismic processing. But, it requires great computational power, that it still somehow harms its practical success. The objective of this work is to explore the implementation of this algorithm in unconventional architectures, specifically GPUs using the CUDA by making an analysis of the difficulties in developing the same, as well as the performance of the algorithm in the sequential and parallel version
Resumo:
The extent of the Brazilian Atlantic rainforest, a global biodiversity hotspot, has been reduced to less than 7% of its original range. Yet, it contains one of the richest butterfly fauna in the world. Butterflies are commonly used as environmental indicators, mostly because of their strict association with host plants, microclimate and resource availability. This research describes diversity, composition and species richness of frugivorous butterflies in a forest fragment in the Brazilian Northeast. It compares communities in different physiognomies and seasons. The climate in the study area is classified as tropical rainy, with two well defined seasons. Butterfly captures were made with 60 Van Someren-Rydon traps, randomly located within six different habitat units (10 traps per unit) that varied from very open (e.g. coconut plantation) to forest interior. Sampling was made between January and December 2008, for five days each month. I captured 12090 individuals from 32 species. The most abundant species were Taygetis laches, Opsiphanes invirae and Hamadryas februa, which accounted for 70% of all captures. Similarity analysis identified two main groups, one of species associated with open or disturbed areas and a second by species associated with shaded areas. There was a strong seasonal component in species composition, with less species and lower abundance in the dry season and more species and higher abundance in the rainy season. K-means analysis indicates that choice of habitat units overestimated faunal perceptions, suggesting less distinct units. The species Taygetis virgilia, Hamadryas chloe, Callicore pygas e Morpho achilles were associated with less disturbed habitats, while Yphthimoides sp, Historis odius, H. acheronta, Hamadryas feronia e Siderone marthesia likey indicate open or disturbed habitats. This research brings important information for conservation of frugivorous butterflies, and will serve as baseline for future projects in environmental monitoring
Resumo:
Telecommunications play a key role in contemporary society. However, as new technologies are put into the market, it also grows the demanding for new products and services that depend on the offered infrastructure, making the problems of planning telecommunications networks, despite the advances in technology, increasingly larger and complex. However, many of these problems can be formulated as models of combinatorial optimization, and the use of heuristic algorithms can help solving these issues in the planning phase. In this project it was developed two pure metaheuristic implementations Genetic algorithm (GA) and Memetic Algorithm (MA) plus a third hybrid implementation Memetic Algorithm with Vocabulary Building (MA+VB) for a problem in telecommunications that is known in the literature as Problem SONET Ring Assignment Problem or SRAP. The SRAP arises during the planning stage of the physical network and it consists in the selection of connections between a number of locations (customers) in order to meet a series of restrictions on the lowest possible cost. This problem is NP-hard, so efficient exact algorithms (in polynomial complexity ) are not known and may, indeed, even exist
Algoritmo evolutivo paralelo para o problema de atribuição de localidades a anéis em redes sonet/sdh
Resumo:
The telecommunications play a fundamental role in the contemporary society, having as one of its main roles to give people the possibility to connect them and integrate them into society in which they operate and, therewith, accelerate development through knowledge. But as new technologies are introduced on the market, increases the demand for new products and services that depend on the infrastructure offered, making the problems of planning of telecommunication networks become increasingly large and complex. Many of these problems, however, can be formulated as combinatorial optimization models, and the use of heuristic algorithms can help solve these issues in the planning phase. This paper proposes the development of a Parallel Evolutionary Algorithm to be applied to telecommunications problem known in the literature as SONET Ring Assignment Problem SRAP. This problem is the class NP-hard and arises during the physical planning of a telecommunication network and consists of determining the connections between locations (customers), satisfying a series of constrains of the lowest possible cost. Experimental results illustrate the effectiveness of the Evolutionary Algorithm parallel, over other methods, to obtain solutions that are either optimal or very close to it