976 resultados para Ammonium sulfide
Resumo:
The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 µmol O2/L) and hypoxic (< 63 µmol O2/L) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 µmol/L even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol/m**2/d on average in the oxic zone, to 7 mmol/m**2/d on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol/m**2/d), but declined to 1.3 mmol/m**2/d in bottom waters with oxygen concentrations below 20 µmol/L. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic-hypoxic zone, to 10 % in the hypoxic-anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.
Resumo:
Porewater concentrations of sulfate, methane, and other relevant constituents were determined on four sediment cores from the high productivity upwelling area off Namibia which were recovered from the continental slope at water depths of 1300 and 2000 m. At all four stations a distinct sulfate-methane transition zone was observed several meters below the seafloor in which both sulfate and methane are consumed. Nutrient porewater concentration profiles do not show gradient slope changes at the depths of the transition zones. Flux calculations carried out on the basis of the determined porewater profiles revealed that anaerobic methane oxidation accounts for 100% of deep sulfate reduction within the sulfate-methane transition zone and consumes the total net diffusive sulfate flux. A significant contribution of organic carbon oxidation to the reduction of sulfate at these depths could, therefore, be excluded. We state that porewater profiles of sulfate with constant gradients above the transition zones are indicative for anaerobic methane oxidation controlling sulfate reduction.
Resumo:
In order to validate the use of 238U/235U as a paleoredox proxy in carbonates, we examined the incorporation and early diagenetic evolution of U isotopes in shallow Bahamian carbonate sediments. Our sample set consists of a variety of primary precipitates that represent a range of carbonate producing organisms and components that were important in the past (scleractinian corals, calcareous green and red algae, ooids, and mollusks). In addition, four short push cores were taken in different depositional environments to assess the impact of early diagenesis and pore water chemistry on the U isotopic composition of bulk carbonates. We find that U concentrations are much higher in bulk carbonate sediments (avg. 4.1 ppm) than in primary precipitates (avg. 1.5 ppm). In almost all cases, the lowest bulk sediment U concentrations were as high as or higher than the highest concentrations found in primary precipitates. This is consistent with authigenic accumulation of reduced U(IV) during early diagenesis. The extent of this process appears sensitive to pore water H2S, and thus indirectly to organic matter content. d238/235U values were very close to seawater values in all of the primary precipitates, suggesting that these carbonate components could be used to reconstruct changes in seawater U geochemistry. However, d238/235U of bulk sediments from the push cores was 0.2-0.4 per mil heavier than seawater (and primary precipitates). These results indicate that authigenic accumulation of U under open-system sulfidic pore water conditions commonly found in carbonate sediments strongly affects the bulk U concentrations and 238U/235U ratios. We also report the occurrence of dolomite in a tidal pond core which contains low 234U/238U and 238U/235U ratios and discuss the possibility that the dolomitization process may result in sediments depleted in 238U. From this initial exploration, it is clear that 238U/235U variations in ancient carbonate sediments could be driven by changes in global average seawater, by spatial and temporal variations in the local deposition environment, or subsequent diagenesis. To cope with such effects, proxies for syndepositional pore water redox conditions (e.g., organic matter content, iron speciation, and trace metal distributions) and careful consideration of possible post-deposition alteration will be required to avoid spurious interpretation of 238U/235U data from ancient carbonate sediments.
Resumo:
This paper reviews Japanese limnological studies mainly in the McMurdo and Syowa oases, with special emphasis on the nutrient distribution. Generally, the chemical composition of the major ionic components in the coastal lakes and ponds is similar to that in seawater, while that in inland Dry Valley lakes and ponds of the McMurdo Oasis is abundant in calcium, magnesium and sulfate ions. The former can be explained by the direct influences of sea salts, while the latter is mainly attributable to the accumulation of atmospheric salts. Most saline lakes are meromictic. Dissolved oxygen concentrations in the upper layers are saturated or supersaturated, but the bottom layers are anoxic and often hydrogen sulfide occurs. The concentrations of nutrients vary largely not only among the lakes but also with depth. Silicate-Si, which is generally abundant in all freshwater and saline lakes, may be due to erosions of soils and rocks. Nitrite-N concentrations in both freshwater and saline lakes are generally low. Nitrate-N concentrations in the oxic layers of the inland saline lakes in the McMurdo Oasis arc often high, but not high in the coastal saline lakes of the Syowa and Vestfold oases. The abundance of phosphate-P and ammonium-N in the bottom stagnant layers of saline lakes can be explained by the accumulation of microbially released nutrients due to the decomposition of organic substances. Nutrients are supplied mainly from meltstreams in the catchment areas, and are proved to play an important role in primary production.
Resumo:
Primary sulfide mineralization in basalts of the Costa Rica Rift occurs mainly in chrome-spinel-bearing olivine tholeiites. Primary sulfides form both globules, consisting of quenched single-phase solid solutions, and irregular polymineralic segregations of pyrrhotite, chalcopyrite, cubanite, and pentlandite. Two types of sulfide solid solutions - iron-nickel (Mss) and iron-copper (Iss) - were found among sulfide globules. These types appear to have formed because of sulfide-sulfide liquid immiscibility in the host magmas; as proved by the presence of globules with a distinct phase boundary between Mss and Iss. Such two-phase globules are associated with large olivine phenocrysts. Inhomogeneties among the globule composition likewise are caused by sulfide-sulfide immiscibility. Secondary sulfides form irregular segregations and veins consisting of pyrite, marcasite, and chalcopyrite.
Resumo:
The ubiquitous marine trace gas dimethyl sulfide (DMS) comprises the greatest natural source of sulfur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short-term response of DMS production and cycling and that of its algal precursor dimethyl sulfoniopropionate (DMSP) to elevated carbon dioxide (CO2) and ocean acidification (OA) in five 96 h shipboard bioassay experiments. Experiments were performed in June and July 2011, using water collected from contrasting sites in NW European waters (Outer Hebrides, Irish Sea, Bay of Biscay, North Sea). Concentrations of DMS and DMSP, alongside rates of DMSP synthesis and DMS production and consumption, were determined during all experiments for ambient CO2 and three high-CO2 treatments (550, 750, 1000 µatm). In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls (110% (28-223%) at 550 µatm, 153% (56-295%) at 750 µatm and 225% (79-413%) at 1000 µatm), and decreases in DMSP concentrations (28% (18-40%) at 550 µatm, 44% (18-64%) at 750 µatm and 52% (24-72%) at 1000 µatm). Significant decreases in DMSP synthesis rate constants (µDMSP /d) and DMSP production rates (nmol/d) were observed in two experiments (7-90% decrease), whilst the response under high CO2 from the remaining experiments was generally indistinguishable from ambient controls. Rates of bacterial DMS gross consumption and production gave weak and inconsistent responses to high CO2. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships and to move towards a mechanistic approach for predicting future DMS concentrations.
Resumo:
Ocean Drilling Program (ODP) Leg 176 built upon the work of ODP Leg 118 wherein the 500-m section that was sampled represented the most complete recovery of an intact portion of lower oceanic crust ever described. During Leg 176, we deepened Hole 735B to >1500 m below seafloor in an environment where gabbroic rocks have been tectonically exposed at the Southwest Indian Ridge. This new expedition extended the remarkable recovery (>85%) that allowed unprecedented investigations into the nature of the lower oceanic crust as a result of Leg 118. Sulfide mineral and bulk rock compositions were determined from samples in the 1000-m section of oceanic gabbros recovered during Leg 176. The sulfide assemblage of pyrrhotite, chalcopyrite, pentlandite, and troilite is present throughout this section, as it is throughout the 500-m gabbroic section above that was sampled during Leg 118. Troilite is commonly present as lamellae, and the only interval where troilite was not observed is from the uppermost 150 m of the section sampled during Leg 118, which is intensely metamorphosed. The common presence of troilite indicates that much of the sulfide assemblage from Hole 735B precipitated from a magmatic system and subsequently underwent low-temperature reequilibration. Evaluation of geochemical trends in bulk rock and sulfides indicates that the combined effects of olivine accumulation in troctolites and high pentlandite to pyrrhotite ratios account for the sporadic bulk rock compositions high in Ni. Bulk rock and sulfide mineral geochemical indicators that are spatially coincident with structural and physical properties anomalies indicate a heretofore unrecognized lithologic unit boundary in this section. Platinum-group element (PGE) compositions were also determined for 36 samples from throughout the section that were recovered during Leg 176. Whereas most samples had low (<0.4 ppb) PGE concentrations, rare samples had elevated PGE values, but no unique common trend between these samples is evident.
Resumo:
To study inorganic nitrogen uptake rates by microplankton in the Black Sea the first 15N-experiments were carried out in August-September 1990 and in November 1991. In surface waters nitrate uptake rates varied from 5.7 to 28.5 nM/l/h in summer and from 1.9 to 7.8 nM/l/h in autumn. In both seasons maximal and minimal rates were observed in frontal zones of shelf/slope areas and in open waters, respectively. In summer average nitrate uptake rate per unit of particulate organic nitrogen was 0.0037 1/h for all stations. In autumn it varied from 0.0007 1/h in the central part of the sea to 0.0033 1/h in the slope near the southeastern Crimean coast. In autumn ammonium uptake rate varied from 7.1 to 22.2 nM/l/h and from 0.0025 to 0.00094 1/h. Ammonium uptake correlated linearly with nitrate uptake, with new production being 22-36% of total summary nitrate and ammonium uptake. There was a linear correlation between nitrogen uptake and chlorophyll a concentrations in the Black Sea. In the water column in autumn both nitrate and ammonium uptake decreased as chlorophyll a concentration diminishes with depth.
Resumo:
In Snake Pit massive sulfide fragments and friable, unconsolidated material recovered during ODP Leg 106, isocubanite and pyrite are generally the predominant phases, followed by marcasite, chalcopyrite, sphalerite, and pyrrhotite. Detailed analyses of paragenetic relations of minerals indicate that isocubanite first precipitated together with pyrrhotite. With decreasing temperature, chalcopyrite and sphalerite precipitated, and at the latest stage colloform sphalerite-pyrite (or colloform marcasite) formed. Isocubanite usually has exsolution lamellae of chalcopyrite and less commonly of pyrrhotite. The average bulk chemical composition of the friable, unconsolidated material indicates that it is rich in copper, reflecting the dominance of isocubanite in the specimens, and is characterized by high Co, low Pb, and Ag contents. Sulfur isotope ratios are very uniform, ranging in d34S from +1.2 to +2.8 per mil. The obtained values are apparently low, compared to those for the eastern Pacific sulfide samples, reflecting a smaller contribution of seawater sulfate in the Snake Pit sulfide deposit.