879 resultados para Ambient dose equivalent
Resumo:
A novel non-metal catalyzed oxidation of organic azides to nitriles under solvent-free conditions is presented employing catalytic amounts of KI, and DABCO in aq. TBHP at room temperature. This nonmetal catalyzed oxidation of azides provides good selectivity as double and triple bonds were not oxidized under the present reaction conditions.
Resumo:
This paper reports the results of employing an artificial bee colony search algorithm for synthesizing a mutually coupled lumped-parameter ladder-network representation of a transformer winding, starting from its measured magnitude frequency response. The existing bee colony algorithm is suitably adopted by appropriately defining constraints, inequalities, and bounds to restrict the search space and thereby ensure synthesis of a nearly unique ladder network corresponding to each frequency response. Ensuring near-uniqueness while constructing the reference circuit (i.e., representation of healthy winding) is the objective. Furthermore, the synthesized circuits must exhibit physical realizability. The proposed method is easy to implement, time efficient, and problems associated with the supply of initial guess in existing methods are circumvented. Experimental results are reported on two types of actual, single, and isolated transformer windings (continuous disc and interleaved disc).
Resumo:
Te-rich Si15Te85-xGex (1 <= x <= 11) glasses are found to exhibit an anomalous phase separations with germanium composition. The structural transformation of o-GeTe crystalline phase from o-GeTe with a = 11.76 angstrom, b = 16.59 angstrom, c = 17.44 angstrom, to high pressure o-GeTe with a new reduced lattice parameters a = 10.95 angstrom, b = 4.03 angstrom, c = 4.45 angstrom, is observed at T-c3 in the composition range 6 <= x <= 11. Raman studies support the possible existence of high pressure o-GeTe phase which is observed in X-ray diffraction experiments. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3696862]
Resumo:
A chemoselective reduction of olefins and acetylenes is demonstrated by employing catalytic amounts of ferric chloride hexahydrate (FeCl3 center dot 6H(2)O) and aqueous hydrazine (NH2NH2 center dot H2O) as hydrogen source at room temperature. The reduction is chemoselective and tolerates a variety of reducible functional groups. Unlike other metal-catalysed reduction methods, the present method employs a minimum amount of aqueous hydrazine (1.5-2 equiv.). Also, the scope of this method is demonstrated in the synthesis of ibuprofen in aqueous medium.
Resumo:
Piezoelectric-device-based vibration energy harvesting requires a rectifier for conversion of input ac to usable dc form. Power loss due to diode drop in rectifier is a significant fraction of the already low levels of harvested power. The proposed circuit is a low-drop-diode equivalent, which mimics a diode using linear region-operated MOSFET. The proposed diode equivalent is powered directly from input signal and requires no additional power supply for its control. Power used by the control circuit is kept at a bare minimum to have an overall output power improvement. Diode equivalent was used to replace the four diodes in a full-wave bridge rectifier, which is the basic full- wave rectifier and is a part of the more advanced rectifiers like switch-only and bias-flip rectifiers. Simulation in 130-nm technology and experiment with discrete components show that a bridge rectifier with the proposed diode provides a 30-169% increase in output power extracted from piezoelectric device, as compared to a bridge rectifier with diode-connected MOSFETs. The bridge rectifier with the proposed diode can extract 90% of the maximum available power from an ideal piezoelectric device-bridge rectifier circuit. Setting aside the constraint of power loss, simulations indicate that diode drop as low as 10 mV at 38 mu A can be achieved.
Resumo:
Results from elasto-plastic numerical simulations of jointed rocks using both the equivalent continuum and discrete continuum approaches are presented, and are compared with experimental measurements. Initially triaxial compression tests on different types of rocks with wide variation in the uniaxial compressive strength are simulated using both the approaches and the results are compared. The applicability and relative merits and limitations of both the approaches for the simulation of jointed rocks are discussed. It is observed that both the approaches are reasonably good in predicting the real response. However, the equivalent continuum approach has predicted somewhat higher stiffness values at low strains. Considering the modelling effort involved in case of discrete continuum approach, for problems with complex geometry, it is suggested that a proper equivalent continuum model can be used, without compromising much on the accuracy of the results. Then the numerical analysis of a tunnel in Japan is taken up using the continuum approach. The deformations predicted are compared well against the field measurements and the predictions from discontinuum analysis. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A circuit topology based on accumulate-and-use philosophy has been developed to harvest RF energy from ambient radiations such as those from cellular towers. Main functional units of this system are antenna, tuned rectifier, supercapacitor, a gated boost converter and the necessary power management circuits. Various RF aspects of the design philosophy for maximizing the conversion efficiency at an input power level of 15 mu W are presented here. The system is characterized in an anechoic chamber and it has been established that this topology can harvest RF power densities as low as 180 mu W/m(2) and can adaptively operate the load depending on the incident radiation levels. The output of this system can be easily configured at a desired voltage in the range 2.2-4.5 V. A practical CMOS load - a low power wireless radio module has been demonstrated to operate intermittently by this approach. This topology can be easily modified for driving other practical loads, from harvested RF energy at different frequencies and power levels.
Resumo:
A theoretical analysis is carried out to observe the influence of important flow parameters such as Nusselt number and Sherwood number on the tip speed of an equiaxed dendrite growing in a convecting alloy melt. The effect of thermal and solutal transfer at the interface due to convection is equated to an undercooling of the melt, and an expression is derived for this equivalent undercooling in terms of the flow Nusselt number and Sherwood number. Results for the equivalent undercooling are compared with corresponding numerical values obtained by performing simulations based on the enthalpy method. This method represents a relatively simple procedure to analyze the effects of melt convection on the growth rate of dendrites. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Segregating the dynamics of gate bias induced threshold voltage shift, and in particular, charge trapping in thin film transistors (TFTs) based on time constants provides insight into the different mechanisms underlying TFTs instability. In this Letter we develop a representation of the time constants and model the magnitude of charge trapped in the form of an equivalent density of created trap states. This representation is extracted from the Fourier spectrum of the dynamics of charge trapping. Using amorphous In-Ga-Zn-O TFTs as an example, the charge trapping was modeled within an energy range of Delta E-t approximate to 0.3 eV and with a density of state distribution as D-t(Et-j) = D-t0 exp(-Delta E-t/kT) with D-t0 = 5.02 x 10(11) cm(-2) eV(-1). Such a model is useful for developing simulation tools for circuit design. (C) 2014 AIP Publishing LLC.
Resumo:
Extensive molecular dynamics studies of 13 different silica polymorphs are reported in the isothermal-isobaric ensemble with the Parrinello-Rahman variable shape simulation cell. The van Beest-Kramer-van Santen (BKS) potential is shown to predict lattice parameters for most phases within 2%-3% accuracy, as well as the relative stabilities of different polymorphs in agreement with experiment. Enthalpies of high-density polymorphs - CaCl2-type, alpha-PbO2-type, and pyrite-type for which no experimental data are available as yet, are predicted here. Further, the calculated enthalpies exhibit two distinct regimes as a function of molar volume-for low and medium-density polymorphs, it is almost independent of volume, while for high-pressure phases a steep dependence is seen. A detailed analysis indicates that the increased short-range contributions to enthalpy in the high-density phases arise not only from an increased coordination number of silicon but also shorter Si-O bond lengths. Our results indicate that amorphous phases of silica exhibit better optimization of short-range interactions than crystalline phases at the same density while the magnitude of Coulombic contributions is lower in the amorphous phase. (C) 2014 AIP Publishing LLC.
Resumo:
This paper presents a theoretical model for studying the effects of shrinkage induced flow on the growth rate of binary alloy dendrites. An equivalent undercooling of the melt is defined in terms of ratio of the phase densities to represent the change in dendrite growth rate due to variation in solutal and thermal transport resulting from shrinkage induced flow. Subsequently, results for dendrite growth rate predicted by the equivalent undercooling model is compared with the corresponding predictions obtained using an enthalpy based numerical method for dendrite growth with shrinkage. The agreement is found to be good. Published by Elsevier Ltd.
Resumo:
We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our HIV curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f(0)) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low HIV peak amplitudes (A(0) = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the HIV method to study complex geological settings as Kachchh. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.
Resumo:
In this letter, we present the results of systematic experimental investigations of the effect of different chemical environments on the low frequency resistance fluctuations of single layer graphene field effect transistors. The shape of the power spectral density of noise was found to be determined by the energetics of the adsorption-desorption of molecules from the graphene surface making it the dominant source of noise in these devices. We also demonstrate a method of quantitatively determining the adsorption energies of chemicals on graphene surface based on noise measurements. We find that the magnitude of noise is extremely sensitive to the nature and amount of the chemical species present. We propose that a chemical sensor based on the measurement of low frequency resistance fluctuations of single layer graphene field effect transistor devices will have extremely high sensitivity, very high specificity, high fidelity, and fast response times. (c) 2015 AIP Publishing LLC.
Resumo:
We have developed a unique single-step chemical vapor deposition (CVD) route for the synthesis of composite thin films containing carbon nanotubes (CNTs). CVD was carried out in an inert ambient using only iron(III) acetylacetonate as the precursor. Depositions were conducted at 700 degrees C on stainless steel substrates in argon ambient in the absence of any reactive gases (such as oxygen, hydrogen). By changing the deposition parameters, especially the pressure in the CVD reactor, the form of carbon deposited could be changed from amorphous to carbon nanotubes, the latter resulting in Fe-Fe3O4-CNT films. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy together confirm the formation of the three-component composite and illustrate the nanoscale mixing of the components. Elemental iron formed in this process was protected from oxidation by the co-deposited carbon surrounding it. Irrespective of the substrate used, a composite coating with CNTs was formed under optimum conditions, as verified by analyses of the film formed on polycrystalline alumina and silicon substrates.