986 resultados para Alveolar proteinosis
Resumo:
BACKGROUND Previous studies found larger lung volumes at school-age in formerly breastfed children, with some studies suggesting an effect modification by maternal asthma. We wanted to explore this further in children who had undergone extensive lung function testing. The current study aimed to assess whether breastfeeding was associated with larger lung volumes and, if so, whether all compartments were affected. We also assessed association of breastfeeding with apparent diffusion coefficient (ADC), which measures freedom of gas diffusion in alveolar-acinar compartments and is a surrogate of alveolar dimensions. Additionally, we assessed whether these effects were modified by maternal asthma. METHODS We analysed data from 111 children and young adults aged 11-21 years, who had participated in detailed lung function testing, including spirometry, plethysmography and measurement of ADC of (3)Helium ((3)He) by MR. Information on breastfeeding came from questionnaires applied in early childhood (age 1-4 years). We determined the association between breastfeeding and these measurements using linear regression, controlling for potential confounders. RESULTS We did not find significant evidence for an association between duration of breastfeeding and lung volumes or alveolar dimensions in the entire sample. In breastfed children of mothers with asthma, we observed larger lung volumes and larger average alveolar size than in non-breastfed children, but the differences did not reach significance levels. CONCLUSIONS Confirmation of effects of breastfeeding on lung volumes would have important implications for public health. Further investigations with larger sample sizes are warranted.
Resumo:
Alveolar echinococcosis (AE), a parasitic disease primarily of the liver caused by the larval stage of Echinococcus multilocularis, is highly endemic in Switzerland. In contrast to well-established management protocols in people, little is known with regard to optimal treatment strategies in dogs. The objective of this study was to describe the clinical signs and diagnostic procedures in dogs with AE and to evaluate outcome following medical treatment alone or surgery and medical treatment. Of 23 putative AE cases between 2004 and 2014, 20 were classified as confirmed (n=18) or probable (n=2) AE, based on abdominal ultrasound, serology, cytology, histology and/or PCR. Most dogs presented with abdominal distension in an advanced stage of disease. Dogs receiving specific treatment (radical or debulking surgery together with medical treatment, or medical treatment alone) survived longer than dogs left untreated, but no difference was found between treatment types. Survival at one year was associated with absence of free abdominal fluid, absence of abdominal distension and treatment of any type. However, dogs treated with debulking surgery all faced relapse. Findings of this study suggest that in AE-affected dogs for which a therapeutic approach is regarded appropriate by owners and veterinarians, radical surgical resection and medical treatment or, if total resection is not possible, medical treatment alone should be considered. However, studies on larger numbers of dogs are necessary before definitive treatment recommendations can be made.
Resumo:
Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.
Resumo:
The anterior superior alveolar nerve (ASAN) is a branch of the infraorbital nerve. Only few studies have morphometrically evaluated the course of the ASAN. Midfacial segments of ten hemisectioned fresh adult cadaver heads were dissected to uncover the anterior wall of the maxilla. Specimens were subsequently decalcified and the bone overlying the ASAN was removed under a microscope to expose the ASAN. Its branching pattern from the infraorbital nerve was recorded, and the course of the ASAN within the anterior wall of the maxillary sinus was morphometrically assessed measuring distances to predefined landmarks using a digital caliper. A distinct ASAN was observed in all specimens. It arose lateral (six cases) or inferior (four cases) from the infraorbital nerve. The point of origin was located at a mean distance of 12.2 ± 5.79 mm posterior to the infraorbital foramen. The ASAN was located on average 2.8 ± 5.13 mm lateral to the infraorbital foramen. After coursing medially, the ASAN ran inferior to the foramen at a mean distance of 5.5 ± 3.07 mm. When approaching the nasal aperture, the loop of the ASAN was on average 13.6 ± 3.07 mm above the nasal floor. The horizontal mean distance from the ASAN to the nasal aperture was 4.3 ± 2.74 mm halfway down from the loop, and 3.3 ± 2.60 mm at the floor of the nose, respectively. In conclusion, the present study evaluated the course of the ASAN relative to the infraorbital foramen and nasal aperture. This information is helpful to avoid damage to this anatomical structure during interventions in the infraobrital region of the maxilla. Further, knowledge of the course of the ASAN and of its bony correlate (canalis sinuosus) may be valuable in interpreting anesthetic or radiologic findings in the anterior maxilla.
Resumo:
One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.
Resumo:
Epidemiological studies have demonstrated that the majority of human individuals exposed to infection with Echinococcus spp. eggs exhibit resistance to disease as shown by either seroconversion to parasite--specific antigens, and/or the presence of 'dying out' or 'aborted' metacestodes, not including hereby those individuals who putatively got infected but did not seroconvert and who subsequently allowed no development of the pathogen. For those individuals where infection leads to disease, the developing parasite is partially controlled by host immunity. In infected humans, the type of immune response developed by the host accounts for the subsequent trichotomy concerning the parasite development: (i) seroconversion proving infection, but lack of any hepatic lesion indicating the failure of the parasite to establish and further develop within the liver; or resistance as shown by the presence of fully calcified lesions; (ii) controlled susceptibility as found in the "conventional" alveolar echinococcosis (AE) patients who experience clinical signs and symptoms approximately 5-15 years after infection, and (iii) uncontrolled hyperproliferation of the metacestode due to an impaired immune response (AIDS or other immunodeficiencies). Immunomodulation of host immunity toward anergy seems to be triggered by parasite metabolites. Beside immunomodulating IL-10, TGFβ-driven regulatory T cells have been shown to play a crucial role in the parasite-modulated progressive course of AE. A novel CD4+CD25+ Treg effector molecule FGL2 recently yielded new insight into the tolerance process in Echinococcus multilocularis infection.
Resumo:
Asbestos and silica are important industrial hazards. Exposure to these dusts can result in pulmonary fibrosis and, in the case of asbestos, cancer. Although the hazards of asbestos and silica exposure have long been known, the pathogenesis of dust-related disease is not well understood. Both silica and asbestos are thought to alter the function of the alveolar macrophage, but the nature of the biochemical alteration is unknown. Therefore, this study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production.^ Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Pertussis toxin pretreatment partially inhibited chrysotile stimulation, suggesting that chrysotile activates a coupling protein in an non-classical manner. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues.^ On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C). Sublethal doses of silica inhibited FNLP-stimulated superoxide anion production, but did not affect phorbol-12,13-dibutyrate-stimulated superoxide anion production, suggesting that the site of inhibition precedes protein kinase C. This inhibition was not due to cell membrane damage, since cell permeability to calcium-45 and rubidium-86 was not increased. It is concluded that chrysotile binds to N-acetylglucosamine residues on macrophage surface glycoproteins to stimulate the physiological pathway resulting in superoxide anion production. In contrast, silica does not stimulate superoxide anion production, but it did inhibit FNLP-stimulated superoxide anion production. ^
Resumo:
Studies have demonstrated a variable response to ozone among individuals and animal species and strains. For instance, C57BL/6J mice have a greater inflammatory response to ozone exposure than C3H/HeJ mice. In these studies, I utilized these strain differences in an effort to derive a mechanistic explanation to the variable strain sensitivity to ozone exposure. Therefore, alveolar macrophages (AM) from C57BL/6J and C3H/HeJ mice were exposed in vitro to hydrogen peroxide ($\rm H\sb2O\sb2$), heat and acetyl ceramide or in vivo to ozone. Necrosis and DNA fragmentation in macrophages from the two murine strains were determined to assess cytotoxicity following these treatments. In addition, synthesis and expression of the stress proteins, stress protein 72 (SP72) and heme oxygenase (HO-1), were examined following treatments. The in vitro experiments were conducted to eliminate the possibility of in vivo confounders (i.e., differences in breathing rates in the two strains) and thus directly implicate some inherent difference between cells from the two murine strains. $\rm H\sb2O\sb2$ and heat caused greater cytotoxicity in AM from C57BL/6J than C3H/HeJ mice and DNA fragmentation was a particularly sensitive indicator of cell injury. Similarly, AM from C57BL/6J mice were more sensitive to ozone exposure than cells from C3H/HeJ mice. Exposure to either 1 or 0.4 ppm ozone caused greater cytotoxicity in macrophages from C57BL/6J mice compared to macrophages from C3H/HeJ mice. The increased sensitivity of AM to injury was associated with decreased synthesis and expression of stress proteins. AM from C57BL/6J mice synthesized and expressed significantly less stress proteins in response to heat and ozone than AM from C3H/HeJ mice. Heat treatment resulted in greater synthesis and expression of SP72. In addition, macrophages from C57BL/6J mice expressed lower amounts of HO-1 than macrophages from C3H/HeJ mice following 0.4 ppm ozone exposure. Therefore, AM from C57BL/6J mice are more susceptible to oxidative injury than AM from C3H/HeJ mice which might be due to differential expression of stress proteins in these cells. ^
Resumo:
The mechanisms involved in the development of pulmonary silicosis have not been well defined, however most current evidence implicates a central role for alveolar macrophages in this process. We propose that the fibrotic potential of a particulate depends upon its ability to cause apoptosis in alveolar macrophage (AM). The overall goal of this study was to determine the mechanism of silica-induced apoptosis of AM. Human AM were treated with fibrogenic, poorly fibrogenic and nonfibrogenic model particulates, such as, silica, amorphous silica and titanium dioxide, respectively (equal surface area). Treatment with silica resulted in apoptosis in human AM as observed by morphology, DNA fragmentation and Cell Death ELISA assays. In contrast, amorphous silica and titanium dioxide demonstrated no significant apoptotic potential. To elucidate the possible mechanism by which silica causes apoptosis, we investigated the role of the scavenger receptor (SR) in silica-induced apoptosis. Cells were pretreated with and without SR ligand binding inhibitors, polyinosinic acid (Poly I), fucoidan and high density lipoprotein (HDL), prior to silica treatment. Pretreatment with Poly I and fucoidan resulted in significant inhibition of silica-induced apoptosis suggesting that silica-induced AM apoptosis is mediated via the SR. Further, we examined the involvement of interleukin converting enzyme (ICE) family of proteases in silica-mediated apoptosis. Silica activated ICE, Ich-1L, cpp32 beta and cleavage of PARP. Taken together, these results suggested that (1) fibrogenic particulates, such as, silica caused apoptosis of alveolar macrophages, (2) this apoptotic potential of fibrogenic particulates may be a critical factor in initiating an inflammatory response resulting in fibrosis, (3) silica-induced apoptosis of alveolar macrophages may be due to the interaction of silica particulates with the SR, and (4) silica-induced apoptosis involves the activation of the ICE family of proteases. An understanding of the molecular events involved in fibrogenic particulate-induced apoptosis may provide a useful insight into the mechanism involved in particulate-induced fibrosis. ^
Resumo:
Alveolar rhabdomyosarcoma (ARMS) cells often harbor one of two unique chromosomal translocations, either t(2;13)(q35;q14) or t(1;13)(p36;q14). The chimeric proteins expressed from these rearrangements, PAX3-FKHR and PAX7-FKHR, respectively, are potent transcriptional activators. In an effort to exploit these unique cancer-specific molecules to achieve ARMS-specific expression of therapeutic genes, we have studied the expression of a minimal promoter linked to six copies of a PAX3 DNA binding site, prs-9. In transient transfections, expression of the prs-9-regulated reporter genes was ≈250-fold higher than expression of genes lacking the prs-9 sequences in cell lines derived from ARMS, but remained at or below baseline levels in other cells. High expression of these prs-9-regulated genes was also observed in a cancer cell line that lacks t(2;13) but was stably transfected with a plasmid expressing PAX3-FKHR. Transfection of a plasmid containing the diphtheria toxin A chain gene regulated by prs-9 sequences (pA3–6PED) was selectively cytotoxic for PAX3-FKHR-expressing cells. This was shown by inhibition of gene expression from cotransfected plasmids and by direct cytotoxicity after transfected cells were isolated by cell sorting. Gene transfer of pA3–6PED may thus be useful as a cancer-specific treatment strategy for t(2;13)- or t(1;13)-positive ARMS. Furthermore, gene transfer of fusion protein-regulated toxin genes might also be applied to the treatment of other cancers that harbor cancer-specific chromosomal translocations involving transcription factors.