916 resultados para All plastic device


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel all-optical time domain regeneration technique using nonlinear pulse broadening and flattening in normal dispersion fiber and subsequent temporal slicing by an amplitude modulator (or a device performing a similar function) is proposed. Substantial suppression of the timing jitter of jitter-degraded optical signals is demonstrated using the proposed approach. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A new commercially available device (IOLMaster, Zeiss Instruments) provides high resolution non-contact measurements of axial length (using partial coherent interferometry), anterior chamber depth, and corneal radius (using image analysis). The study evaluates the validity and repeatability of these measurements and compares the findings with those obtained from instrumentation currently used in clinical practice. Method: Measurements were taken on 52 subjects (104 eyes) aged 18-40 years with a range of mean spherical refractive error from +7.0 D to -9.50 D. IOLMaster measurements of anterior chamber depth and axial length were compared with A-scan applanation ultrasonography (Storz Omega) and those for corneal radius with a Javal-Schiötz keratometer (Topcon) and an EyeSys corneal videokeratoscope. Results: Axial length: the difference between IOLMaster and ultrasound measures was insignificant (0.02 (SD 0.32) mm, p = 0.47) with no bias across the range sampled (22.40-27.99 mm). Anterior chamber depth: significantly shorter depths than ultrasound were found with the IOLMaster (-0.06 (0.25) mm, p <0.02) with no bias across the range sampled (2.85-4.40 mm). Corneal radius: IOLMaster measurements matched more closely those of the keratometer than those of the videokeratoscope (mean difference -0.03 v -0.06 mm respectively), but were more variable (95% confidence 0.13 v 0.07 mm). The repeatability of all the above IOLMaster biometric measures was found to be of a high order with no significant bias across the measurement ranges sampled. Conclusions: The validity and repeatability of measurements provided by the IOLMaster will augment future studies in ocular biometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Ni-Mg-Al-Ca catalyst was prepared by a co-precipitation method for hydrogen production from polymeric materials. The prepared catalyst was designed for both the steam cracking of hydrocarbons and for the in situ absorption of CO2 via enhancement of the water-gas shift reaction. The influence of Ca content in the catalyst and catalyst calcination temperature in relation to the pyrolysis-gasification of a wood sawdust/polypropylene mixture was investigated. The highest hydrogen yield of 39.6molH2/g Ni with H2/CO ratio of 1.90 was obtained in the presence of the Ca containing catalyst of molar ratio Ni:Mg:Al:Ca=1:1:1:4, calcined at 500°C. In addition, thermogravimetric and morphology analyses of the reacted catalysts revealed that Ca introduction into the Ni-Mg-Al catalyst prevented the deposition of filamentous carbon on the catalyst surface. Furthermore, all metals were well dispersed in the catalyst after the pyrolysis-gasification process with 20-30nm of NiO sized particles observed after the gasification without significant aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A szerzők tanulmányukban az információbiztonság egy merőben új, minőségi változást hozó találmányával, a kvantumkulcscserével (QKD-vel – quantum key distribution) foglalkoznak. Céljuk az, hogy az újdonságra mint informatikai biztonsági termékre tekintsenek, és megvizsgálják a bevezetéséről szóló vállalati döntés során felmerülő érveket, ellenérveket. Munkájuk egyaránt műszaki és üzleti szemléletű. Előbb elkülönítik a kvantumkulcscsere hagyományos eljárásokkal szembeni használatának motiváló tényezőit, és megállapítják, milyen körülmények között szükséges a napi működésben alkalmazni. Ezt követően a forgalomban is kapható QKD-termékek tulajdonságait és gyártóit szemügyre véve megfogalmazzák a termék széles körű elterjedésének korlátait. Végül a kvantumkulcscsere-termék bevezetéséről szóló vállalati döntéshozás különböző aspektusait tekintik át. Információbiztonsági és üzleti szempontból összehasonlítják az új, valamint a hagyományosan használt kulcscsereeszközöket. Javaslatot tesznek a védendő információ értékének becslésére, amely a használatbavétel költség-haszon elemzését támaszthatja alá. Ebből levezetve megállapítják, hogy mely szervezetek alkotják a QKD lehetséges célcsoportját. Utolsó lépésként pedig arra keresik a választ, melyik időpont lehet ideális a termék bevezetésére. _____ This study aims to illuminate Quantum Key Distribution (QKD), a new invention that has the potential to bring sweeping changes to information security. The authors’ goal is to present QKD as a product in the field of IT security, and to examine several pro and con arguments regarding the installation of this product. Their work demonstrates both the technical and the business perspectives of applying QKD. First they identify motivational factors of using Quantum Key Distribution over traditional methods. Then the authors assess under which circumstances QKD could be necessary to be used in daily business. Furthermore, to evaluate the limitations of its broad spread, they introduce the vendors and explore the properties of their commercially available QKD products. Bearing all this in mind, they come out with numerous factors that can influence corporate decision making regarding the installation of QKD. The authors compare the traditional and the new tools of key distribution from an IT security and business perspective. They also take efforts to estimate the value of the pieces of information to be protected. This could be useful for a subsequent cost–benefit analysis. Their findings try to provide support for determining the target audience of QKD in the IT security market. Finally the authors attempt to find an ideal moment for an organization to invest in Quantum Key Distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides environmental context to all samples from the Tara Oceans Expedition (2009-2013), about water column features at the sampling location. Based on in situ measurements of... at the...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such type of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale in the problem but all nonlinear processes, both Wiener type and Ornstein-Uhlenbeck type, scale as a function of the noise decay time τ. The results are expected to ramify existing experimental observations and inspire new numerical and laboratory tests to gain further insight into the competition between deterministic and random effects in modeling plastically deformed samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background.  The optimum approach for infectious complication surveillance for cardiac implantable electronic device (CIED) procedures is unclear. We created an automated surveillance tool for infectious complications after CIED procedures. Methods.  Adults having CIED procedures between January 1, 2005 and December 31, 2011 at Duke University Hospital were identified retrospectively using International Classification of Diseases, 9th revision (ICD-9) procedure codes. Potential infections were identified with combinations of ICD-9 diagnosis codes and microbiology data for 365 days postprocedure. All microbiology-identified and a subset of ICD-9 code-identified possible cases, as well as a subset of procedures without microbiology or ICD-9 codes, were reviewed. Test performance characteristics for specific queries were calculated. Results.  Overall, 6097 patients had 7137 procedures. Of these, 1686 procedures with potential infectious complications were identified: 174 by both ICD-9 code and microbiology, 14 only by microbiology, and 1498 only by ICD-9 criteria. We reviewed 558 potential cases, including all 188 microbiology-identified cases, 250 randomly selected ICD-9 cases, and 120 with neither. Overall, 65 unique infections were identified, including 5 of 250 reviewed cases identified only by ICD-9 codes. Queries that included microbiology data and ICD-9 code 996.61 had good overall test performance, with sensitivities of approximately 90% and specificities of approximately 80%. Queries with ICD-9 codes alone had poor specificity. Extrapolation of reviewed infectious rates to nonreviewed cases yields an estimated rate of infection of 1.3%. Conclusions.  Electronic queries with combinations of ICD-9 codes and microbiologic data can be created and have good test performance characteristics for identifying likely infectious complications of CIED procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coupling of mechanical stress fields in polymers to covalent chemistry (polymer mechanochemistry) has provided access to previously unattainable chemical reactions and polymer transformations. In the bulk, mechanochemical activation has been used as the basis for new classes of stress-responsive polymers that demonstrate stress/strain sensing, shear-induced intermolecular reactivity for molecular level remodeling and self-strengthening, and the release of acids and other small molecules that are potentially capable of triggering further chemical response. The potential utility of polymer mechanochemistry in functional materials is limited, however, by the fact that to date, all reported covalent activation in the bulk occurs in concert with plastic yield and deformation, so that the structure of the activated object is vastly different from its nascent form. Mechanochemically activated materials have thus been limited to “single use” demonstrations, rather than as multi-functional materials for structural and/or device applications. Here, we report that filled polydimethylsiloxane (PDMS) elastomers provide a robust elastic substrate into which mechanophores can be embedded and activated under conditions from which the sample regains its original shape and properties. Fabrication is straightforward and easily accessible, providing access for the first time to objects and devices that either release or reversibly activate chemical functionality over hundreds of loading cycles.

While the mechanically accelerated ring-opening reaction of spiropyran to merocyanine and associated color change provides a useful method by which to image the molecular scale stress/strain distribution within a polymer, the magnitude of the forces necessary for activation had yet to be quantified. Here, we report single molecule force spectroscopy studies of two spiropyran isomers. Ring opening on the timescale of tens of milliseconds is found to require forces of ~240 pN, well below that of previously characterized covalent mechanophores. The lower threshold force is a combination of a low force-free activation energy and the fact that the change in rate with force (activation length) of each isomer is greater than that inferred in other systems. Importantly, quantifying the magnitude of forces required to activate individual spiropyran-based force-probes enables the probe behave as a “scout” of molecular forces in materials; the observed behavior of which can be extrapolated to predict the reactivity of potential mechanophores within a given material and deformation.

We subsequently translated the design platform to existing dynamic soft technologies to fabricate the first mechanochemically responsive devices; first, by remotely inducing dielectric patterning of an elastic substrate to produce assorted fluorescent patterns in concert with topological changes; and second, by adopting a soft robotic platform to produce a color change from the strains inherent to pneumatically actuated robotic motion. Shown herein, covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation into value-added, constructive covalent chemical responses. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional actuating device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the actuator in a way that might also be coupled to feedback loops that allow autonomous, self-regulation of activity.

In the future, both the specific material and the general approach should be useful in enriching the responsive functionality of soft elastomeric materials and devices. We anticipate the development of new mechanophores that, like the materials, are reversibly and repeatedly activated, expanding the capabilities of soft, active devices and further permitting dynamic control over chemical reactivity that is otherwise inaccessible, each in response to a single remote signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The building sector requires the worldwide production of 4 billion tonnes of cement annually, consuming more than 40% of global energy and accounting for about 8% of the total CO2 emissions. The SUS-CON project aimed at integrating waste materials in the production cycle of concrete, for both ready-mixed and pre-cast applications, resulting in an innovative light-weight, ecocompatible and cost-effective construction material, made by all-waste materials and characterized by enhanced thermal insulation performance and low embodied energy and CO2. Alkali activated “cementless” binders, which have recently emerged as eco-friendly construction materials, were used in conjunction with lightweight recycled aggregates to produce sustainable concrete for a range of applications. This paper presents some results from the development of a concrete made with a geopolymeric binder (alkali activated fly ash) and aggregate from recycled mixed plastic. Mix optimisation was achieved through an extensive investigation on production parameters for binder and aggregate. The mix recipe was developed for achieving the required fresh and hardened properties. The optimised mix gave compressive strength of about 7 MPa, flexural strength of about 1.3 MPa and a thermal conductivity of 0.34 W/mK. Fresh and hardened properties were deemed suitable for the industrial production of precast products. Precast panels were designed and produced for the construction of demonstration buildings. Mock-ups of about 2.5 x 2.5 x 2.5 m were built at a demo park in Spain both with SUS-CON and Portland cement concrete, monitoring internal and external temperatures. Field results indicate that the SUS-CON mock-ups have better insulation. During the warmest period of the day, the measured temperature in the SUS-CON mock-ups was lower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural fibers can be used in rotational molding process to obtain parts with improved mechanical properties. Different approaches have been followed in order to produce formulations containing banana or abaca fiber at 5% weight, in two- and three-layer constructions. Chemically treated abaca fiber has also been studied, causing some problems in processability. Fibers used have been characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), optical microscopy, and single-fiber mechanical tests. Rotomolded parts have been tested for tensile, flexural, and impact properties, demonstrating that important increases in elastic modulus are achieved with these fibers, although impact properties are reduced. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

End users urgently request using mobile devices at their workplace. They know these devices from their private life and appreciate functionality and usability, and want to benefit from these advantages at work as well. Limitations and restrictions would not be accepted by them. On the contrary, companies are obliged to employ substantial organizational and technical measures to ensure data security and compliance when allowing to use mobile devices at the workplace. So far, only individual arrangements have been presented addressing single issues in ensuring data security and compliance. However, companies need to follow a comprehensive set of measures addressing all relevant aspects of data security and compliance in order to play it safe. Thus, in this paper at first technical architectures for using mobile devices in enterprise IT are reviewed. Thereafter a set of compliance rules is presented and, as major contribution, technical measures are explained that enable a company to integrate mobile devices into enterprise IT while still complying with these rules comprehensively. Depending on the company context, one or more of the technical architectures have to be chosen impacting the specific technical measures for compliance as elaborated in this paper. Altogether this paper, for the first time, correlates technical architectures for using mobile devices at the workplace with technical measures to assure data security and compliance according to a comprehensive set of rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article investigates how teachers in religious education (RE) think and act as professionals while working with differences in religious and philosophy of life experiences and beliefs in class and trying to do this in respectful and inclusive ways. It analyses data from two research projects that were carried out in lower secondary school in Norway. The main research question is: What is the relationship between teachers’ contextual knowledge and knowledge of the child and how do these two dimensions of professional knowledge interact when religious education teachers try to strike a good balance between inclusion and productive learning in their teaching practice? The data analysed were drawn from three different data sets featuring three Norwegian religious education-teachers. The research was part of the EU-funded "REDCo"-project and the "Religious education and diversity" - project ["ROM"] funded by the Norwegian Research Council. The interviewees emphasized the potential of the religious education subject to contribute to a wider tolerance for difference and to support individual students in their identity management. The analysis shows, however, that considerable contextual awareness - of the classroom and of the local community - is needed to realize this potential. It also shows the importance of interpersonal knowledge between the teacher and each student if contextual awareness is to be effective in terms of inclusion, participation, wellbeing and good learning outcomes for all students.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous SiC heterostructures built as a double pin device has a non linear spectral gain which is a function of the signal wavelength that impinges on its front or back surface. Illuminating the device with several single wavelength data channels in the visible spectrum allows for Wavelength Division Multiplexing (WDM) digital communication. Using fixed ultra-violet illumination at the front or back surfaces enables the recovery of the multiplexed channels. Five channels, each using a single wavelength which is modulated by a Manchester coded signal at 12,000 bps, form a frame with 1024 bits with a preamble for signal intensity and synchronisation purposes. Results show that the clustering of the received signal enables the successful recovery of the five channel data using the front and back illumination of the surfaces of the double pin photo device. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current project assesses potential molten alloy anodes for Solid Oxide Fuel Cells (SOFC) running on solid waste. A detailed phase diagram study was performed to locate probable anode systems. The molten metal oxide system PbO-Sb2O3 was selected as a possible molten alloy anode for this application. A detailed vapour pressure study of this system was performed. Several cells were fabricated to experimentally assess the electrochemical properties of this system. The work reveals several unexpected limiting features such as the incompatibility between the platinum and the chosen alloy. A second cell was built, this time using rhenium wires instead, preventing such reaction. However, the rhenium wire sublimes under oxidizing conditions (air) and the sealing glass and the chosen alloy system react with each other under long term use. Considering all these issues, a third cell design was conceived, surpassing some obstacles and providing some initial information regarding the electrochemical behaviour. The current project shows that many parameters need to be taken into account to ensure materials compatibility. For the PbOSb2O3 system, the high volatility of Sb2O3 was a serious limitation that can only be addressed through the application of new contact wires or sealing materials and conditions. Nonetheless, the project highlights several other potential systems that can be considered, such as Pb11Ge3O17, Pb3GeO5, Pb5Ge3O11, Bi2CuO4, Bi2PdO4, Bi12GeO20.