775 resultados para Algorithm clustering
Resumo:
Data analysis, fuzzy clustering, fuzzy rules, air traffic management
Resumo:
Magdeburg, Univ., Fak. für Informatik, Habil.-Schr., 2006
Resumo:
Background:Vascular remodeling, the dynamic dimensional change in face of stress, can assume different directions as well as magnitudes in atherosclerotic disease. Classical measurements rely on reference to segments at a distance, risking inappropriate comparison between dislike vessel portions.Objective:to explore a new method for quantifying vessel remodeling, based on the comparison between a given target segment and its inferred normal dimensions.Methods:Geometric parameters and plaque composition were determined in 67 patients using three-vessel intravascular ultrasound with virtual histology (IVUS-VH). Coronary vessel remodeling at cross-section (n = 27.639) and lesion (n = 618) levels was assessed using classical metrics and a novel analytic algorithm based on the fractional vessel remodeling index (FVRI), which quantifies the total change in arterial wall dimensions related to the estimated normal dimension of the vessel. A prediction model was built to estimate the normal dimension of the vessel for calculation of FVRI.Results:According to the new algorithm, “Ectatic” remodeling pattern was least common, “Complete compensatory” remodeling was present in approximately half of the instances, and “Negative” and “Incomplete compensatory” remodeling types were detected in the remaining. Compared to a traditional diagnostic scheme, FVRI-based classification seemed to better discriminate plaque composition by IVUS-VH.Conclusion:Quantitative assessment of coronary remodeling using target segment dimensions offers a promising approach to evaluate the vessel response to plaque growth/regression.
Resumo:
Magdeburg, Univ., Fak. für Inf., Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
...In dieser Arbeit untersuche ich den ”Fluch der Dimensionen” mittels dem Begriff der Distanzkonzentration. Ich zeige, dass dieser Effekt im Datenmodell mittels der paarweisen Kovarianzkoeffizienten der Randverteilungen beschrieben werden kann. Zusätzlich vergleiche ich 10 prototypbasierte Clusteralgorithmen mittels 800.000 Clusterergebnissen von künstlich erzeugten Datensätzen. Ich erforsche, wie und warum Clusteralgorithmen von der Anzahl der Merkmale beeinflusst werden. Mit den Clusterergebnissen untersuche ich außerdem, wie gut 5 der populärsten Clusterqualitätsmaße die tatsächliche Clusterqualität schätzen.
Resumo:
The parameterized expectations algorithm (PEA) involves a long simulation and a nonlinear least squares (NLS) fit, both embedded in a loop. Both steps are natural candidates for parallelization. This note shows that parallelization can lead to important speedups for the PEA. I provide example code for a simple model that can serve as a template for parallelization of more interesting models, as well as a download link for an image of a bootable CD that allows creation of a cluster and execution of the example code in minutes, with no need to install any software.
Resumo:
Memòria elaborada a partir d’una estada al projecte Proteus de la New York University entre abril i juny del 2007. Les tècniques de clustering poden ajudar a reduir la supervisió en processos d’obtenció de patrons per a Extracció d’Informació. Tanmateix, és necessari disposar d’algorismes adequats a documents, i aquests algorismes requereixen mesures adequades de similitud entre patrons. Els kernels poden oferir una solució a aquests problemes, però l’aprenentatge no supervisat requereix d’estrat`egies m´es astutes que l’aprenentatge supervisat per a incorporar major quantitat d’informació. En aquesta memòria, fruit de la meva estada de mes d’Abril al de Juny de 2007 al projecte. Proteus de la New York University, es proposen i avaluen diversos kernels sobre patrons. Ini- cialment s’estudien kernels amb una família de patrons restringits, i a continuació s’apliquen kernels ja usats en tasques supervisades d’Extracció d’Informació. Degut a la degradació del rendiment que experimenta el clustering a l’afegir informació irrellevant, els kernels se simpli- fiquen i es busquen estratègies per a incorporar-hi semàntica de forma selectiva. Finalment, s’estudia quin efecte té aplicar clustering sobre el coneixement semàntic com a pas previ al clustering de patrons. Les diverses estratègies s’avaluen en tasques de clustering de documents i patrons usant dades reals.
Resumo:
The use of the Internet now has a specific purpose: to find information. Unfortunately, the amount of data available on the Internet is growing exponentially, creating what can be considered a nearly infinite and ever-evolving network with no discernable structure. This rapid growth has raised the question of how to find the most relevant information. Many different techniques have been introduced to address the information overload, including search engines, Semantic Web, and recommender systems, among others. Recommender systems are computer-based techniques that are used to reduce information overload and recommend products likely to interest a user when given some information about the user's profile. This technique is mainly used in e-Commerce to suggest items that fit a customer's purchasing tendencies. The use of recommender systems for e-Government is a research topic that is intended to improve the interaction among public administrations, citizens, and the private sector through reducing information overload on e-Government services. More specifically, e-Democracy aims to increase citizens' participation in democratic processes through the use of information and communication technologies. In this chapter, an architecture of a recommender system that uses fuzzy clustering methods for e-Elections is introduced. In addition, a comparison with the smartvote system, a Web-based Voting Assistance Application (VAA) used to aid voters in finding the party or candidate that is most in line with their preferences, is presented.
Resumo:
Las aplicaciones de alineamiento múltiple de secuencias son prototipos de aplicaciones que requieren elevada potencia de cómputo y memoria. Se destacan por la relevancia científica que tienen los resultados que brindan a investigaciones científicas en el campo de la biomedicina, genética y farmacología. Las aplicaciones de alineamiento múltiple tienen la limitante de que no son capaces de procesar miles de secuencias, por lo que se hace necesario crear un modelo para resolver la problemática. Analizando el volumen de datos que se manipulan en el área de las ciencias biológica y la complejidad de los algoritmos de alineamiento de secuencias, la única vía de solución del problema es a través de la utilización de entornos de cómputo paralelos y la computación de altas prestaciones. La investigación realizada por nosotros tiene como objetivo la creación de un modelo paralelo que le permita a los algoritmos de alineamiento múltiple aumentar el número de secuencias a procesar, tratando de mantener la calidad en los resultados para garantizar la precisión científica. El modelo que proponemos emplea como base la clusterización de las secuencias de entrada utilizando criterios biológicos que permiten mantener la calidad de los resultados. Además, el modelo se enfoca en la disminución del tiempo de cómputo y consumo de memoria. Para presentar y validar el modelo utilizamos T-Coffee, como plataforma de desarrollo e investigación. El modelo propuesto pudiera ser aplicado a cualquier otro algoritmo de alineamiento múltiple de secuencias.
Resumo:
The implicit projection algorithm of isotropic plasticity is extended to an objective anisotropic elastic perfectly plastic model. The recursion formula developed to project the trial stress on the yield surface, is applicable to any non linear elastic law and any plastic yield function.A curvilinear transverse isotropic model based on a quadratic elastic potential and on Hill's quadratic yield criterion is then developed and implemented in a computer program for bone mechanics perspectives. The paper concludes with a numerical study of a schematic bone-prosthesis system to illustrate the potential of the model.
Resumo:
A family of nonempty closed convex sets is built by using the data of the Generalized Nash equilibrium problem (GNEP). The sets are selected iteratively such that the intersection of the selected sets contains solutions of the GNEP. The algorithm introduced by Iusem-Sosa (2003) is adapted to obtain solutions of the GNEP. Finally some numerical experiments are given to illustrate the numerical behavior of the algorithm.
Resumo:
Creative industries tend to concentrate mainly around large- and medium-sized cities, forming creative local production systems. The text analyses the forces behind clustering of creative industries to provide the first empirical explanation of the determinants of creative employment clustering following a multidisciplinary approach based on cultural and creative economics, evolutionary geography and urban economics. A comparative analysis has been performed for Italy and Spain. The results show different patterns of creative employment clustering in both countries. The small role of historical and cultural endowments, the size of the place, the average size of creative industries, the productive diversity and the concentration of human capital and creative class have been found as common factors of clustering in both countries.