828 resultados para Alcohol fuels.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann's area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin beta II, and alpha- and beta-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in a-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in beta-spectrin protein levels, and a significant increase in transmembranous alpha 3 (catalytic) subunit of the Na+, K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of a-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic alpha-and beta-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few decades, wine makers have been producing wines with a higher alcohol content, assuming that they are more appreciated by consumers. To test this hypothesis, we used functional magnetic imaging to compare reactions of human subjects to different types of wine, focusing on brain regions critical for flavor processing and food reward. Participants were presented with carefully matched pairs of high- and low- alcohol content red wines, without informing them of any of the wine attributes. Contrary to expectation, significantly greater activation was found for low- alcohol than for high- alcohol content wines in brain regions that are sensitive to taste intensity, including the insula as well as the cerebellum. Wines were closely matched for all physical attributes except for alcohol content, thus we interpret the preferential response to the low- alcohol content wines as arising from top-down modulation due to the low alcohol content wines inducing greater attentional exploration of aromas and flavours. The findings raise intriguing possibilities for objectively testing hypotheses regarding methods of producing a highly complex product such as wine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body length measurement is an important part of growth, condition, and mortality analyses of larval and juvenile fish. If the measurements are not accurate (i.e., do not reflect real fish length), results of subsequent analyses may be affected considerably (McGurk, 1985; Fey, 1999; Porter et al., 2001). The primary cause of error in fish length measurement is shrinkage related to collection and preservation (Theilacker, 1980; Hay, 1981; Butler, 1992; Fey, 1999). The magnitude of shrinkage depends on many factors, namely the duration and speed of the collection tow, abundance of other planktonic organisms in the sample (Theilacker, 1980; Hay, 1981; Jennings, 1991), the type and strength of the preservative (Hay, 1982), and the species of fish (Jennings, 1991; Fey, 1999). Further, fish size affects shrinkage (Fowler and Smith, 1983; Fey, 1999, 2001), indicating that live length should be modeled as a function of preserved length (Pepin et al., 1998; Fey, 1999).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A contaminação de ambientes aquáticos decorrente de acidentes com gasolina, álcool combustível e misturas binárias representa um risco crescente, tendo em vista as projeções do setor para os próximos 50 anos. O objetivo do presente estudo foi avaliar a toxicidade aguda da Gasolina C, Gasolina P e álcool combustível isoladamente e em misturas binárias, assim como de suas respectivas Frações Solúveis em Água (FSA) e Frações Dispersas em Água (FDA) sobre Daphnia similis. O estudo ainda incluiu a avaliação da toxicidade aguda remanescente na matriz água de uma contaminação antiga (intemperismo) com a Gasolina C. Paralelamente, foram conduzidos ensaios de toxicidade aguda com amostras ambientais (água subterrânea, superficial e elutriato a partir de sedimentos) de uma área alagada com histórico de contaminação antiga. O cultivo e os ensaios com D. similis foram de acordo com a NBR 12.713 (2009). Tanto a gasolina C quanto a P foram extremamente tóxicas para os organismos, apresentando valores médios de CE50% em 48 h de 0,00113% e 0,058% respectivamente. As diferenças entre os resultados obtidos com a Gasolina C e aqueles obtidos com suas frações FSA e FDA foram significativas (p < 0,05), sendo que não houve diferença significativa entre a toxicidade aguda da FSA e da FDA (p < 0,05). Os resultados obtidos com os ensaios com Gasolina P e FDA não apresentaram diferenças significativas entre si (p < 0,05), mas, foram significativamente diferentes daqueles obtidos com FSA (p < 0,05). Os resultados dos ensaios de toxicidade aguda com misturas binárias sugeriram efeito menos que aditivo (antagonismo). Os resultados da simulação de uma contaminação antiga demonstraram redução acentuada da toxicidade para D. similis ao longo de apenas 28 dias. Entretanto, com relação aos ensaios com as amostras ambientais da área com histórico de contaminação, apesar da ausência ou baixa toxicidade nas amostras de água superficial (sugerindo intemperismo), toxicidade alta foi observada em amostras de água subterrânea e no elutriato de sedimentos, sugerindo condições de adsorção aos sedimentos com alto teor de argila e/ou aprisionamento dos compostos em zona saturada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State and regional policies, such as low carbon fuel standards (LCFSs), increasingly mandate that transportation fuels be examined according to their greenhouse gas (GHG) emissions. We investigate whether such policies benefit from determining fuel carbon intensities (FCIs) locally to account for variations in fuel production and to stimulate improvements in FCI. In this study, we examine the FCI of transportation fuels on a lifecycle basis within a specific state, Minnesota, and compare the results to FCIs using national averages. Using data compiled from 18 refineries over an 11-year period, we find that ethanol production is highly variable, resulting in a 42% difference between carbon intensities. Historical data suggests that lower FCIs are possible through incremental improvements in refining efficiency and the use of biomass for processing heat. Stochastic modeling of the corn ethanol FCI shows that gains in certainty due to knowledge of specific refinery inputs are overwhelmed by uncertainty in parameters external to the refiner, including impacts of fertilization and land use change. The LCA results are incorporated into multiple policy scenarios to demonstrate the effect of policy configurations on the use of alternative fuels. These results provide a contrast between volumetric mandates and LCFSs. © 2011 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we performed an evaluation of decay heat power of advanced, fast spectrum, lead and molten salt-cooled reactors, with flexible conversion ratio. The decay heat power was calculated using the BGCore computer code, which explicitly tracks over 1700 isotopes in the fuel throughout its burnup and subsequent decay. In the first stage, the capability of the BGCore code to accurately predict the decay heat power was verified by performing a benchmark calculation for a typical UO2 fuel in a Pressurized Water Reactor environment against the (ANSI/ANS-5.1-2005, "Decay Heat Power in Light Water Reactors," American National Standard) standard. Very good agreement (within 5%) between the two methods was obtained. Once BGCore calculation capabilities were verified, we calculated decay power for fast reactors with different coolants and conversion ratios, for which no standard procedure is currently available. Notable differences were observed for the decay power of the advanced reactor as compared with the conventional UO2 LWR. The importance of the observed differences was demonstrated by performing a simulation of a Station Blackout transient with the RELAP5 computer code for a lead-cooled fast reactor. The simulation was performed twice: using the code-default ANS-79 decay heat curve and using the curve calculated specifically for the studied core by BGCore code. The differences in the decay heat power resulted in failure to meet maximum cladding temperature limit criteria by ∼100 °C in the latter case, while in the transient simulation with the ANS-79 decay heat curve, all safety limits were satisfied. The results of this study show that the design of new reactor safety systems must be based on decay power curves specific to each individual case in order to assure the desired performance of these systems. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the basic feasibility of using reactor-grade Pu in fertile-free fuel (FFF) matrix in pressurized water reactors (PWRs). Several important issues were investigated in this work: the Pu loading required to achieve a specific interrefueling interval, the impact of inert matrix composition on reactivity constrained length of cycle, and the potential of utilizing burnable poisons (BPs) to alleviate degradation of the reactivity control mechanism and temperature coefficients. Although the subject was addressed in the past, no systematic approach for assessment of BP utilization in FFF cores was published. In this work, we examine all commercially available BP materials in all geometrical arrangements currently used by the nuclear industry with regards to their potential to alleviate the problems associated with the use of FFF in PWRs. The recently proposed MgO-ZrO2 solid-state solution fuel matrix, which appears to be very promising in terms of thermal properties and radiation damage resistance, was used as a reference matrix material in this work. The neutronic impact of the relative amounts of MgO and ZrO2 in the matrix were also studied. The analysis was performed with a neutron transport and fuel assembly burnup code BOXER. A modified linear reactivity model was applied to the two-dimensional single fuel assembly results to approximate the full core characteristics. Based on the results of the performed analyses, the Pu-loaded FFF core demonstrated potential feasibility to be used in existing PWRs. Major FFF core design problems may be significantly mitigated through the correct choice of BP design. It was found that a combination of BP materials and geometries may be required to meet all FFF design goals. The use of enriched (in most effective isotope) BPs, such as 167Er and 157Gd, may further improve the BP effectiveness and reduce the fuel cycle length penalty associated with their use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thorium-based fuel cycle for light water reactors will reduce the plutonium generation rate and enhance the proliferation resistance of the spent fuel. However, priming the thorium cycle with 235U is necessary, and the 235U fraction in the uranium must be limited to below 20% to minimize proliferation concerns. Thus, a once-through thorium-uranium dioxide (ThO2-UO2) fuel cycle of no less than 25% uranium becomes necessary for normal pressurized water reactor (PWR) operating cycle lengths. Spatial separation of the uranium and thorium parts of the fuel can improve the achievable burnup of the thorium-uranium fuel designs through more effective breeding of 233U from the 232Th. Focus is on microheterogeneous fuel designs for PWRs, where the spatial separation of the uranium and thorium is on the order of a few millimetres to a few centimetres, including duplex pellet, axially microheterogeneous fuel, and a checkerboard of uranium and thorium pins. A special effort was made to understand the underlying reactor physics mechanisms responsible for enhancing the achievable burnup at spatial separation of the two fuels. The neutron spectral shift was identified as the primary reason for the enhancement of burnup capabilities. Mutual resonance shielding of uranium and thorium is also a factor; however, it is small in magnitude. It is shown that the microheterogeneous fuel can achieve higher burnups, by up to 15%, than the reference all-uranium fuel. However, denaturing of the 233U in the thorium portion of the fuel with small amounts of uranium significantly impairs this enhancement. The denaturing is also necessary to meet conventional PWR thermal limits by improving the power share of the thorium region at the beginning of fuel irradiation. Meeting thermal-hydraulic design requirements by some of the microheterogeneous fuels while still meeting or exceeding the burnup of the all-uranium case is shown to be potentially feasible. However, the large power imbalance between the uranium and thorium regions creates several design challenges, such as higher fission gas release and cladding temperature gradients. A reduction of plutonium generation by a factor of 3 in comparison with all-uranium PWR fuel using the same initial 235U content was estimated. In contrast to homogeneously mixed U-Th fuel, microheterogeneous fuel has a potential for economic performance comparable to the all-UO2 fuel provided that the microheterogeneous fuel incremental manufacturing costs are negligibly small.