997 resultados para Aircraft survival equipment
Resumo:
Topoisomerases are an important class of enzymes for regulating the DNA transaction processes. Mycobacterium tuberculosis (Mtb) is one of the most formidable pathogens also posing serious challenges for therapeutic interventions. The organism contains only one type IA topoisomerase (Rv3646c), offering an opportunity to test its potential as a candidate drug target. To validate the essentiality of M.tuberculosis topoisomerase I (TopoI(Mt)) for bacterial growth and survival, we have generated a conditionally regulated strain of topoI in Mtb. The conditional knockdown mutant exhibited delayed growth on agar plate. In liquid culture, the growth was drastically impaired when TopoI expression was suppressed. Additionally, novobiocin and isoniazid showed enhanced inhibitory potential against the conditional mutant. Analysis of the nucleoid revealed its altered architecture upon TopoI depletion. These studies establish the essentiality of TopoI for the M.tuberculosis growth and open up new avenues for targeting the enzyme.
Resumo:
Object. Insulin-like growth factor binding proteins (IGEBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. Methods. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. Results. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. Conclusions. IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Resumo:
Background: Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guerin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Methods: Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-alpha in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain-and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-alpha treatment. Results: Here, we show that BCG inhibits TNF-alpha-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-alpha-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53(-/-) and MDA-MB-231 cells. Conclusion: Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers.
Resumo:
Aberrant activation of Notch and Ras pathways has been detected in breast cancers. A synergy between these two pathways has also been shown in breast cell transformation in culture. Yet, the clinical relevance of Notch-Ras cooperation in breast cancer progression remains unexplored. In this study, we show that coordinate hyperactivation of Notch1 and Ras/MAPK pathways in breast cancer patient specimens, as assessed by IHC for cleaved Notch1 and pErk1/2, respectively, correlated with early relapse to vital organs and poor overall survival. Interestingly, majority of such Notch1 (high)Erk(high) cases encompassed the highly aggressive triple-negative breast cancers (TNBC), and were enriched in stem cell markers. We further show that combinatorial inhibition of Notch1 and Ras/MAPK pathways, using a novel mAb against Notch1 and a MEK inhibitor, respectively, led to a significant reduction in proliferation and survival of breast cancer cells compared with individual inhibition. Combined inhibition also abrogated sphere-forming potential, and depleted the putative cancer stem-like cell subpopulation. Most importantly, combinatorial inhibition of Notch1 and Ras/MAPK pathways completely blocked tumor growth in a panel of breast cancer xenografts, including the TNBCs. Thus, our study identifies coordinate hyperactivation of Notch1 and Ras/MAPK pathways as novel biomarkers for poor breast cancer outcome. Furthermore, based on our preclinical data, we propose combinatorial targeting of these two pathways as a treatment strategy for highly aggressive breast cancers, particularly the TNBCs that currently lack any targeted therapeutic module. (C) 2014 AACR.
Resumo:
T-protein, an aminomethyltransferase, represents one of the four components of glycine cleavage system (GCS) and catalyzes the transfer of methylene group from H-protein intermediate to tetrahydrofolate (THF) forming N-5, N-10-methylene THF (CH2-THF) with the release of ammonia. The malaria parasite genome encodes T-, H- and L-proteins, but not P-protein which is a glycine decarboxylase generating the aminomethylene group. A putative GCS has been considered to be functional in the parasite mitochondrion despite the absence of a detectable P-protein homologue. In the present study, the mitochondrial localization of T-protein in the malaria parasite was confirmed by immunofluorescence and its essentiality in the entire parasite life cycle was studied by targeting the T-protein locus in Plasmodium berghei (Pb). PbT knock out parasites did not show any growth defect in asexual, sexual and liver stages indicating that the T-protein is dispensable for parasite survival in vertebrate and invertebrate hosts. The absence of P-protein homologue and the non-essentiality of T protein suggest the possible redundancy of GCS activity in the malaria parasite. Nevertheless, the H- and L-proteins of GCS could be essential for malaria parasite because of their involvement in alpha-lcetoacid dehydrogenase reactions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In cells, N-10-formyltetrahydrofolate (N-10-fTHF) is required for formylation of eubacterial/organellar initiator tRNA and purine nucleotide biosynthesis. Biosynthesis of N-10-fTHF is catalyzed by 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) and/or 10-formyltetrahydrofolate synthetase (Fhs). All eubacteria possess FolD, but some possess both FolD and Fhs. However, the reasons for possessing Fhs in addition to FolD have remained unclear. We used Escherichia coli, which naturally lacks fhs, as our model. We show that in E. coli, the essential function of folD could be replaced by Clostridium perfringens fhs when it was provided on a medium-copy-number plasmid or integrated as a single-copy gene in the chromosome. The fhs-supported folD deletion (Delta folD) strains grow well in a complex medium. However, these strains require purines and glycine as supplements for growth in M9 minimal medium. The in vivo levels of N-10-fTHF in the Delta folD strain (supported by plasmid-borne fhs) were limiting despite the high capacity of the available Fhs to synthesize N-10-fTHF in vitro. Auxotrophy for purines could be alleviated by supplementing formate to the medium, and that for glycine was alleviated by engineering THF import into the cells. The Delta folD strain (harboring fhs on the chromosome) showed a high NADP(+)-to-NADPH ratio and hypersensitivity to trimethoprim. The presence of fhs in E. coli was disadvantageous for its aerobic growth. However, under hypoxia, E. coli strains harboring fhs outcompeted those lacking it. The computational analysis revealed a predominant natural occurrence of fhs in anaerobic and facultative anaerobic bacteria.
Resumo:
During the early stages of operation, high-tech startups need to overcome the liability of newness and manage high degree of uncertainty. Several high-tech startups fail due to inability to deal with skeptical customers, underdeveloped markets and limited resources in selling an offering that has no precedent. This paper leverages the principles of effectuation (a logic of entrepreneurial decision making under uncertainty) to explain the journey from creation to survival of high-tech startups in an emerging economy. Based on the 99tests.com case study, this paper suggests that early stage high-tech startups in emerging economies can increase their probability of survival by adopting the principles of effectuation.
Resumo:
Glyoxalase I which is synonymously known as lactoylglutathione lyase is a critical enzyme in methylglyoxal (MG) detoxification. We assessed the STM3117 encoded lactoylglutathione lyase (Lgl) of Salmonella Typhimurium, which is known to function as a virulence factor, due in part to its ability to detoxify methylglyoxal. We found that STM3117 encoded Lgl isomerises the hemithioacetal adduct of MG and glutathione (GSH) into S-lactoylglutathione. Lgl was observed to be an outer membrane bound protein with maximum expression at the exponential growth phase. The deletion mutant of S. Typhimurium (lgl) exhibited a notable growth inhibition coupled with oxidative DNA damage and membrane disruptions, in accordance with the growth arrest phenomenon associated with typical glyoxalase I deletion. However, growth in glucose minimal medium did not result in any inhibition. Endogenous expression of recombinant Lgl in serovar Typhi led to an increased resistance and growth in presence of external MG. Being a metalloprotein, Lgl was found to get activated maximally by Co2+ ion followed by Ni2+, while Zn2+ did not activate the enzyme and this could be attributed to the geometry of the particular protein-metal complex attained in the catalytically active state. Our results offer an insight on the pivotal role of the virulence associated and horizontally acquired STM3117 gene in non-typhoidal serovars with direct correlation of its activity in lending survival advantage to Salmonella spp.
Resumo:
A wireless fuel quantity indication system (FQIS) has been developed using an RFID-enabled sensing platform. The system comprises a fully passive tag, modified reader protocol, capacitive fuel probe, and auxiliary antenna for additional energy harvesting. Results of fluid testing show sensitivity to changes in fluid height of less than 0.25in. An RF-DC harvesting circuit was developed, which delivers up to 5dBm of input power through a remote radio frequency (RF) source. Testing was conducted in a loaded reverberation chamber to emulate the fuel tank environment. Results demonstrate feasibility of the remote source to power the sensor with less than 1W of maximum transmit power and under 100ms dwell time (100mW average power) into the tank. This indicates adequate coverage for large transport aircraft at safe operating levels with a sample rate of up to 1 sample/s.
Resumo:
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented Delta mimG: Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant Msm Rv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-kappa B, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.
Resumo:
The atomization characteristics of blends of bioderived camelina hydrogenated renewable jet (HRJ) alternative fuel with conventional aviation kerosene (Jet A-1) discharging into ambient atmospheric air from a dual-orifice atomizer used in aircraft engines are described. The spray tests are conducted in a spray test facility at six different test flow conditions to compare the atomization of alternative fuels with that of Jet A-1. The fuel sprays are characterized in terms of fuel discharge, spray cone angle, drop size distribution, and spray patternation. The measurements of spray drop size distribution are obtained using laser diffraction based Spraytec equipment. The characteristics of fuel discharge and cone angle of alternative fuel sprays do not show any changes from that of Jet A-1 sprays. The characteristics of spray drop size, evaluated in terms of the variation of mean drop size along the spray axis, for the alternative fuel sprays remain unaffected by the variation in fuel properties between the alternative fuels and Jet A-1. The measurements on spray patternation, obtained using a mechanical patternator at a distance 5.1 cm from the atomizer exit, show an enhanced fuel concentration in the vicinity of spray axis region for the alternative fuel sprays discharging from the dual-orifice atomizer.
Resumo:
The survival protein SurE from Salmonella typhimurium (StSurE) is a dimeric protein that functions as a phosphatase. SurE dimers are formed by the swapping of a loop with a pair of beta-strands and a C-terminal helix between two protomers. In a previous study, the Asp230 and His234 residues were mutated to Ala to abolish a hydrogen bond that was thought to be crucial for C-terminal helix swapping. These mutations led to functionally inactive and distorted dimers in which the two protomers were related by a rotation of 167 degrees. New salt bridges involving Glu112 were observed in the dimeric interface of the H234A and D230A/H234A mutants. To explore the role of these salt bridges in the stability of the distorted structure, E112A, E112A/D230A, E112A/H234A, E112A/D230A/H234A, R179L/H180A/H234A and E112A/R179L/H180A/H234A mutants were constructed. X-ray crystal structures of the E112A, E112A/H234A and E112A/D230A mutants could be determined. The dimeric structures of the E112A and E112A/H234A mutants were similar to that of native SurE, while the E112A/D230A mutant had a residual rotation of 11 degrees between the B chains upon superposition of the A chains of the mutant and native dimers. The native dimeric structure was nearly restored in the E112A/H234A mutant, suggesting that the new salt bridge observed in the H234A and D230A/H234A mutants was indeed responsible for the stability of their distorted structures. Catalytic activity was also restored in these mutants, implying that appropriate dimeric organization is necessary for the activity of SurE.
Resumo:
Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n = 27) and GBM (n = 28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p < 0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-Fc gamma RIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1 beta (IL1 beta) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1 beta neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1 beta which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma discrimination, identified IL1 beta as a potential candidate for developing targeted therapy. (C) 2015 Elsevier B.V. All rights reserved.