906 resultados para Agronomic and economic indicators
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000 kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO2), carbon dioxide (CO2) and nitrogen oxides (NOx). (c) 2006 Elsevier Ltd. All rights reserved.
Ecological impacts from syngas burning in internal combustion engine: Technical and economic aspects
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this paper was to develop a model for calculating the economical flow diameter and velocity, by obtaining the economical diameter, using Swamee's friction factor equation, by minimizing the total annual cost. The application of the model to a regular supply condition showed that the diameter of the actual condition, 250 mm, compared with the diameter calculated by the mode, at the same tariff as that applied to the property ( ground), 284.1 mm, involved the necessity to generate, transmit, and distribute extra electrical energy, due to the higher load loss caused by the original diameter, approximately 30800 kWh/year. This means that in one year, the consumer would spend R$2,804.00 more on pumping cost alone.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this research was to evaluate average daily gain (ADG), carcass traits, meat tenderness and profitability of keeping cattle fed different oilseeds and vitamin E in feedlot. A total of 40 Red Norte young bulls with initial average body weight of 339±15 kg were utilized. The experimental design was completely randomized in a 2 × 2 factorial arrangement. The experiment lasted 84 days and experimental diets presented soybeans or cottonseeds as lipid sources associated or not to daily supplementation of 2,500 UI vitamin E per animal. The concentrate:roughage ratio was 60:40. Diets had the same amount of nitrogen (13% CP) and ether extract (6.5%). The data were analyzed by means of statistical software SAS 9.1. Neither vitamin supplementation nor lipid source affected ADG. There was no interaction between lipid source and vitamin supplementation for the variables studied. The inclusion of cottonseed reduced the carcass yield. There was no effect of diets on hot and cold carcass weights or prime cuts. The inclusion of cottonseed reduced the backfat thickness. No effect of experimental diets on the rib-eye area was observed. There was no effect of lipid source or vitamin supplementation on meat tenderness, which was affected, however, by ageing time. Diets with soybeans presented higher cost per animal. The utilization of soybean implied reduction of the gross margin (R$ 59.17 and R$ 60.51 for diets based on soy with and without supplemental vitamin, respectively, vs. R$ 176.42 and R$ 131.79 for diets based on cottonseed). The utilization of cottonseed enables improvement of profitability of feedlot fattening, in spite of negatively affecting some carcass characteristics.
Resumo:
A simulation model implemented in the programming software Delphi XE® was applied to evaluate sex selection in bovine. The hypothesis under investigation was that a dynamic model with stochastic and deterministic elements could detect the sexed semen technique to minimize pregnancy cost and to determine the adequate number of recipients required for in vivo (ET) and in vitro embryo production (IVP) in the proposed scenarios. Sex selection was compared through semen sexed using flow cytometry (C1) and density gradient centrifugation techniques (C2) in ET and IVP. Sensibility analyses were used to identify the adequate number of recipients for each scenario. This number was reinserted into the model to determine the biological and financial values that maximized ET and IVP using sexed semen (C1M and C2M). New scenarios showed that the density gradient technique minimized pregnancy cost based on the proposed scenarios. In addition, the adequate number of recipients (ET - C1M - 115 and C2M - 105)/(IVP - C1M - 145 and C2M - 140) per donor used was determined to minimize the pregnancy cost in all scenarios.
Resumo:
In this work, thermodynamic and economic analyses are applied to a Brazilian thermal power plant operating with natural gas. The analyses are performed in two cases: the current configuration and the future configuration. The current configuration is constituted by four gas turbines which operate in open cycle. The future configuration is obtained by a plant repowering by addition of four recovery boilers, two steam turbines and others equipment and accessories necessary to operate in combined cycle. In order to obtain the performance parameters, energetic and exergetic analyses for each case considered are carried out. on the other hand, thermoeconomic analysis provides means to evaluate the influences of the capital and fuel costs in the composition of the electricity costs. Techniques of investment analysis are also applied to the new configuration and from the results obtained it is possible to verify the advantages of the modifications.
Resumo:
Background. Iron-deficiency anemia currently is the most frequently occurring nutritional disorder worldwide. Previous Brazilian studies have demonstrated that drinking water fortified with iron and ascorbic acid is an adequate vehicle for improving the iron supply for children frequenting day-care centers. Objective. The objective of this study was to clarify the role of ascorbic acid as a vehicle for improving iron intake in children in day-care centers in Brazil. Methods. A six-month study was conducted on 150 children frequenting six day-care centers divided into two groups of three day-care centers by drawing lots: the iron-C group (3 day-care centers, n = 74), which used water fortified with 10 mg elemental iron and 100 mg ascorbic acid per liter, and the comparison group (3 day-care centers, n = 76), which used water containing only 100 mg ascorbic acid per liter. Anthropometric measurements and determinations of capillary hemoglobin were performed at the beginning of the study and after six months of intervention. The food offered at the day-care centers was also analyzed. Results. The fo od offered at the day-care center was found to be deficient in ascorbic acid, poor in heme iron, and adequate in non-heme iron. Supplementation with fortified drinking water resulted in a decrease in the prevalence of anemia and an increase in mean hemoglobin levels associated with height gain in both groups. Conclusions. Fortification of drinking water with iron has previously demonstrated effectiveness in increasing iron supplies. This simple strategy was confirmed in the present study. The present study also demonstrated that for populations receiving an abundant supply of non-heme iron, it is possible to control anemia in a simple, safe, and inexpensive manner by adding ascorbic acid to drinking water. © 2005, The United Nations University.
Resumo:
Incluye Bibliografía
Resumo:
This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.
Resumo:
Includes bibliography
Resumo:
Dos copias disponibles
Resumo:
Includes bibliography