934 resultados para Agro-biodiversity
Resumo:
Biodiversity has been defined as the totality of genes, species, and ecosystems that inhabit the earth with the field contributing to many aspects of our lives and livelihoods by providing us with food, drink, medicines and shelter, as well as contributing to improving our surrounding environment. Benefits include providing life services through improved horticultural production, improving the business and service of horticulture as well as our environment, as well as improving our health and wellbeing, and our social and cultural relationships. Threats to biodiversity can include fragmentation, degradation and deforestation of habitat, introduction of invasive and exotic species, climate change and extreme weather events, over-exploitation of our natural resources, hybridisation, genetic pollution/erosion and food security issues and human overpopulation. This chapter examines a series of examples that provide the dual aims of biodiversity conservation and horticultural production and service; namely organic horticultural cropping, turf management, and nature-based tourism, and ways of valuing biological biodiversity such as the payment of environmental services and bio-prospecting. Horticulture plays a major role in the preserving of biodiversity.
Resumo:
Many countries have conservation plans for threatened species, but such plans have generally been developed without taking into account the potential impacts of climate change. Here, we apply a decision framework, specifically developed to identify and prioritise climate change adaptation actions and demonstrate its use for 30 species threatened in the UK. Our aim is to assess whether government conservation recommendations remain appropriate under a changing climate. The species, associated with three different habitats (lowland heath, broadleaved woodland and calcareous grassland), were selected from a range of taxonomic groups (primarily moths and vascular plants, but also including bees, bryophytes, carabid beetles and spiders). We compare the actions identified for these threatened species by the decision framework with those included in existing conservation plans, as developed by the UK Government's statutory adviser on nature conservation. We find that many existing conservation recommendations are also identified by the decision framework. However, there are large differences in the spatial prioritisation of actions when explicitly considering projected climate change impacts. This includes recommendations for actions to be carried out in areas where species do not currently occur, in order to allow them to track movement of suitable conditions for their survival. Uncertainties in climate change projections are not a reason to ignore them. Our results suggest that existing conservation plans, which do not take into account potential changes in suitable climatic conditions for species, may fail to maximise species persistence. Comparisons across species also suggest a more habitat-focused approach could be adopted to enable climate change adaptation for multiple species.
Resumo:
Global change drivers are known to interact in their effects on biodiversity, but much research to date ignores this complexity. As a consequence, there are problems in the attribution of biodiversity change to different drivers and, therefore, our ability to manage habitats and landscapes appropriately. Few studies explicitly acknowledge and account for interactive (i.e., nonadditive) effects of land use and climate change on biodiversity. One reason is that the mechanisms by which drivers interact are poorly understood. We evaluate such mechanisms, including interactions between demographic parameters, evolutionary trade-offs and synergies and threshold effects of population size and patch occupancy on population persistence. Other reasons for the lack of appropriate research are limited data availability and analytical issues in addressing interaction effects. We highlight the influence that attribution errors can have on biodiversity projections and discuss experimental designs and analytical tools suited to this challenge. Finally, we summarize the risks and opportunities provided by the existence of interaction effects. Risks include ineffective conservation management; but opportunities also arise, whereby the negative impacts of climate change on biodiversity can be reduced through appropriate land management as an adaptation measure. We hope that increasing the understanding of key mechanisms underlying interaction effects and discussing appropriate experimental and analytical designs for attribution will help researchers, policy makers, and conservation practitioners to better minimize risks and exploit opportunities provided by land use-climate change interactions.
A decision framework for considering climate change adaptation in biodiversity conservation planning
Resumo:
General principles of climate change adaptation for biodiversity have been formulated, but do not help prioritize actions. This is inhibiting their integration into conservation planning. We address this need with a decision framework that identifies and prioritizes actions to increase the adaptive capacity of species. The framework classifies species according to their current distribution and projected future climate space, as a basis for selecting appropriate decision trees. Decisions rely primarily on expert opinion, with additional information from quantitative models, where data are available. The framework considers in-situ management, followed by interventions at the landscape scale and finally translocation or ex-situ conservation. Synthesis and applications: From eight case studies, the key interventions identified for integrating climate change adaptation into conservation planning were local management and expansion of sites. We anticipate that, in combination with consideration of socio-economic and local factors, the decision framework will be a useful tool for conservation and natural resource managers to integrate adaptation measures into conservation plans.
Resumo:
Human population growth and resource use, mediated by changes in climate, land use, and water use, increasingly impact biodiversity and ecosystem services provision. However, impacts of these drivers on biodiversity and ecosystem services are rarely analyzed simultaneously and remain largely unknown. An emerging question is how science can improve the understanding of change in biodiversity and ecosystem service delivery and of potential feedback mechanisms of adaptive governance. We analyzed past and future change in drivers in south-central Sweden. We used the analysis to identify main research challenges and outline important research tasks. Since the 19th century, our study area has experienced substantial and interlinked changes; a 1.6°C temperature increase, rapid population growth, urbanization, and massive changes in land use and water use. Considerable future changes are also projected until the mid-21st century. However, little is known about the impacts on biodiversity and ecosystem services so far, and this in turn hampers future projections of such effects. Therefore, we urge scientists to explore interdisciplinary approaches designed to investigate change in multiple drivers, underlying mechanisms, and interactions over time, including assessment and analysis of matching-scale data from several disciplines. Such a perspective is needed for science to contribute to adaptive governance by constantly improving the understanding of linked change complexities and their impacts.
Resumo:
Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.
Resumo:
Deforestation in Brazilian Amazonia accounts for a disproportionate global scale fraction of both carbon emissions from biomass burning and biodiversity erosion through habitat loss. Here we use field- and remote-sensing data to examine the effects of private landholding size on the amount and type of forest cover retained within economically active rural properties in an aging southern Amazonian deforestation frontier. Data on both upland and riparian forest cover from a survey of 300 rural properties indicated that 49.4% (SD = 29.0%) of the total forest cover was maintained as of 2007. and that property size is a key regional-scale determinant of patterns of deforestation and land-use change. Small properties (<= 150 ha) retained a lower proportion of forest (20.7%, SD = 17.6) than did large properties (>150 ha; 55.6%, SD = 27.2). Generalized linear models showed that property size had a positive effect on remaining areas of both upland and total forest cover. Using a Landsat time-series, the age of first clear-cutting that could be mapped within the boundaries of each property had a negative effect on the proportion of upland, riparian, and total forest cover retained. Based on these data, we show contrasts in land-use strategies between smallholders and largeholders, as well as differences in compliance with legal requirements in relation to minimum forest cover set-asides within private landholdings. This suggests that property size structure must be explicitly considered in landscape-scale conservation planning initiatives guiding agro-pastoral frontier expansion into remaining areas of tropical forest. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We see today many efforts to quantify biodiversity in different biomes. It is very important then to develop and to apply other methodologies that allow us to assess biodiversity. Here we present an example of application of three tools with this goal. We analyzed two populations of Plebeia remota from two distinct biomes that already showed several differences in morphology and behavior. Based on these differences, it has been suggested that the populations of Cunha and Prudentopolis do not represent a single species. In order to verify the existence or absence of gene flow between these two groups, we characterized the patterns of mtDNA through RFLP, the patterns of wing venation through geometric morphometry, and the cuticular hydrocarbons through gas chromatography-mass spectrometry. We used bees collected in these two locations and also from colonies which have being kept for around 9 years at Sao Paulo University. We found six different haplotypes in these specimens, of which three of them occurred exclusively in the population of Cunha and three only in the Prudentopolis population. The fact that the populations do not share haplotypes suggests no maternal gene flow between them. The two populations were differentiated by the pattern of the wing veins. They also had different mixtures of cuticle hydrocarbons. Furthermore it was shown that the colonies kept at the university did not hybridize. These two groups may constitute different species. We also show here the importance of using other methodologies than traditional taxonomy to assess and understand biodiversity, especially in bees.
Resumo:
In southern Bahia, Brazil, large land areas are used for the production of cocoa (Theobroma cacao), which is predominantly grown under the shade of native trees in an agroforestry system locally known as cabruca. As a dominant forest-like landscape element of the cocoa region, the cabrucas play an important role in the conservation of the region`s biodiversity. The purpose of this review is to provide the scientific basis for an action plan to reconcile cocoa production and biodiversity conservation in southern Bahia. The available research collectively highlights the diversity of responses of different species and biological groups to both the habitat quality of the cabrucas themselves and to the general characteristics of the landscape, such as the relative extent and spatial configuration of different vegetation types within the landscape mosaic. We identify factors that influence directly or indirectly the occurrence of native species in the cabrucas and the wider landscape of the cocoa region and develop recommendations for their conservation management. We show that the current scientific knowledge already provides a good basis for a biodiversity friendly management of the cocoa region of southern Bahia, although more work is needed to refine some management recommendations, especially on shade canopy composition and density, and verify their economic viability. The implementation of our recommendations should be accompanied by appropriate biological and socioeconomic monitoring and the findings should inform a broad program of adaptive management of the cabrucas and the wider cocoa landscape.
Resumo:
Long-term conservation in biodiversity hotspots depends on the recovery of communities in secondary forest fragments. In most cases, however, recovery strategies for these areas are based only on passive restoration. It is therefore necessary to determine the efficiency of such strategies. In this study, we assess the efficiency of passive restoration on a 567-ha 28-yr-old fragment of Atlantic Rainforest in Northeastern Brazil. We measured richness, composition, abundance and biomass of a lizard taxocene and also vegetation structure and availability of several microhabitat descriptors in 18 plots of this secondary forest. We then compared them with measures in 29 plots from two neighboring reference sites. Species richness, abundance, biomass and microhabitat descriptors availability inside the secondary fragment did not differ from reference sites. However, composition and vegetation structure showed small differences. Some forest specialist lizards, which should be a focus of conservation efforts in fragmented landscapes of the Atlantic Rainforest, were not found in the fragment and data indicate that this was not due to sampling or a lack of suitable habitat or microhabitat. In the presence of preserved source sites, passive restoration may be a cheap and effective way to recover lizard taxocenes of the Atlantic Rainforest. Some of the species may need to be re-introduced to accelerate the full recovery of original composition of lizard taxocenes in secondary Atlantic Rainforests.
Resumo:
The long-term Colonia record is located in the Atlantic rainforest domain in Brazil (23 degrees 52`S 46 degrees 42`20 `` W 900 m a.s.l.). The 780 cm long core CO3 provides a coverage of a complete interglacial/glacial cycle for the first time in a neotropical rainforest. Information on the behavior of tropical climates compared to global changes in temperatures indicates specific climate responses in terms of precipitation at these latitudes. Winter extratropical circulation was very active during the last interglacial and most of the glacial. Floristic composition of the rainforest changed several times in each phase of expansion, twice during the interglacial, and three times during glacial episodes. Araucaria was well developed in the area of Sao Paulo until the beginning of the first dry phase of the glacial at ca. 50,000 yr B.P. Changes in insolation controlled the expansion of the rainforest and the tropical hydrological cycle as evidenced by a strong precession signal. However precession had no impact on regional climatic features. The two interglacials (MIS 5e and Holocene) showed completely different patterns attesting to the continuous evolution of the forest. The biodiversity index (Shannon-Wiener Index) remained high during both the interglacial and glacial attesting to the permanence of small patches of rainforest refugia during drier phases. The lowest Shannon-Wiener Indexes were recorded between 23,000 and 12,000 yr B.P. and 40,000 and 30,000 yr B.P. and characterize two marked phases of stress for the rainforest. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Leaf fibers are fibers that run lengthwise through the leaves of most monocotyledonous plants such as pineapple, banana, etc. Pineapple (Ananas comosus) and Banana (Musa indica) are emerging fiber having a very large potential to be used for composite materials. Over 150,000 ha of pineapple and over 100,000 ha of banana plantations are available in Brazil for the fruit production and enormous amount of agricultural waste is produced. This residual waste represents one of the single largest sources of cellulose fibers available at almost no cost. The potential consumers for this fiber are pulp and paper, chemical feedstock, textiles and composites for the automotive, furniture and civil construction industry.
Resumo:
In the last years extreme hydrometeorological phenomena have increased in number and intensity affecting the inhabitants of various regions, an example of these effects are the central basins of the Gulf of Mexico (CBGM) that they have been affected by 55.2% with floods and especially the state of Veracruz (1999-2013), leaving economic, social and environmental losses. Mexico currently lacks sufficient hydrological studies for the measurement of volumes in rivers, since is convenient to create a hydrological model (HM) suited to the quality and quantity of the geographic and climatic information that is reliable and affordable. Therefore this research compares the semi-distributed hydrological model (SHM) and the global hydrological model (GHM), with respect to the volumes of runoff and achieve to predict flood areas, furthermore, were analyzed extreme hydrometeorological phenomena in the CBGM, by modeling the Hydrologic Modeling System (HEC-HMS) which is a SHM and the Modèle Hydrologique Simplifié à I'Extrême (MOHYSE) which is a GHM, to evaluate the results and compare which model is suitable for tropical conditions to propose public policies for integrated basins management and flood prevention. Thus it was determined the temporal and spatial framework of the analyzed basins according to hurricanes and floods. It were developed the SHM and GHM models, which were calibrated, validated and compared the results to identify the sensitivity to the real model. It was concluded that both models conform to tropical conditions of the CBGM, having MOHYSE further approximation to the real model. Worth mentioning that in Mexico there is not enough information, besides there are no records of MOHYSE use in Mexico, so it can be a useful tool for determining runoff volumes. Finally, with the SHM and the GHM were generated climate change scenarios to develop risk studies creating a risk map for urban planning, agro-hydrological and territorial organization.
Resumo:
Nos últimos 30 anos, a problemática ambiental tem se apresentado, para a espécie humana, como um importante espaço de discussão acerca de novos valores éticos, políticos e existenciais regulatórios da vida individual e coletiva na biosfera terrestre. Em um primeiro momento, este recente despertar global para a temática do meio ambiente parece estar associado à exacerbação dos “problemas” (agora tidos como planetários) a ele vinculado. Contudo, por trás deste aparente jogo de causa-efeito, escondem-se motivações muito mais profundas e que são, de fato, aquelas que levaram a sociedade contemporânea a identificar conscientemente tais “problemas”. Este processo está intimamente relacionado à própria historicidade que envolve a construção social de uma problemática que, apesar de parecer inédita, é antiga e recorrente na história da humanidade. Além disso, as conseqüências desse aparente “despertar” não podem ser medidas somente em relação ao que representam em termos de eventuais avanços nas políticas de preservação ou, da mesma forma, quanto à capacidade de responder adequadamente aos chamados “novos riscos globais”. Exemplo disso é o fato de que, por trás destes macroprocessos ecológicos, estão em curso certas derivações não programadas relacionadas às populações e realidades locais e regionais. Neste sentido, os grupos sociais que vivem no que se costuma chamar de “meio rural” (expressão que, neste trabalho, insere-se dentro do conceito de agro-eco-sistema) não necessariamente irão aderir completamente as políticas ambientais pensadas pelos planejadores dos órgãos públicos, das instituições de pesquisa ou, ainda, das organizações não-governamentais. Em suma, existe aí uma “apropriação criativa” e que não pode ser facilmente medida ou antecipada Será justamente a reflexão sobre como está se dando este processo de interferência da problemática ambiental nos agro-eco-sistemas o objeto desta dissertação. Para tanto, optou-se, primeiro, por escolher um determinado espaço social e geográfico (o agro-eco-sistema da bacia do Rio Maquiné) para realizar as análises empíricas e, segundo, tomar como base analítica os pontos de vista de dois grupos sociais distintos: os agricultores familiares e seus mediadores sociais. Assim, pôde-se constatar que, nestes espaços, a problemática ambiental tem proporcionado, efetivamente, o desencadeamento de novos processos de reestruturação das relações homem-meio ambiente. Contudo, por outro lado, pôde-se, igualmente, perceber que este fenômeno possui um caráter paradoxal. Isto, porque há, neste caso, a imposição de uma série de novas normas legais, padrões produtivos e valores morais antes inexistentes e que agora tem que ser incorporadas pelas populações locais. Ao longo da pesquisa, feita segundo uma perspectiva ao mesmo tempo histórica e espacial, várias contradições que se seguiram à chegada dos novos “valores ecológicos” puderam ser identificadas. Neste sentido, um dos resultados mais interessantes foi perceber que (pelo menos no agro-eco-sistema estudado), tal como foram os processos envolvendo a chamada “modernização conservadora” da agricultura, também a introdução de políticas ambientais se mostrou amplamente desigual (no que diz respeito à diversidade social destes espaços e as oportunidades disponíveis aos agentes), desestruturante (principalmente no que tange aos modos de vida existentes) e pouco “democrática” (havendo uma completa desconsideração dos conhecimentos e experiências dos agricultores em relação ao ambiente onde eles próprios vivem, trabalham, se divertem e, obviamente, retiram aquilo que garante sua reprodução social ao longo do tempo).