888 resultados para Aggressive incidents inside a Montreal barroom involving patrons
Resumo:
(Document pdf contains 19 pages)
Resumo:
For fully three decades there has been an almost steady decline in Maryland's oyster production... are alarmed for its future. Reasons for decline, data supplied,importance of brood oysters and clutch replenishment. Problems of warm weather and bacterial activity as well as tongs grinding the bottom. Conflicts in canning of early season oysters and late season crops like tomatoes. (PDF contains 16 pages)
Resumo:
Background: Gastrointestinal stromal tumours (GISTs) are the most common primary mesenchymal neoplasia in the gastrointestinal tract, although they represent only a small fraction of total gastrointestinal malignancies in adults (<2%). GISTs can be located at any level of the gastrointestinal tract; the stomach is the most common location (60-70%), in contrast to the rectum, which is most rare (4%). When a GIST invades into the adjacent prostate tissue, it can simulate prostate cancer. In this study, we report on a case comprising the unexpected collision between a rectal GIST tumour and a prostatic adenocarcinoma. Findings: We describe the complexity of the clinical, endoscopic and radiological diagnosis, of the differential diagnosis based on tumour biopsy, and of the role of neoadjuvant therapy using imatinib prior to surgical treatment. Conclusions: Although isolated cases of coexisting GISTs and prostatic adenocarcinomas have reviously been described, this is the first reported case in the medical literature of a collision tumour involving a rectal GIST and prostatic adenocarcinoma components.
Resumo:
Traditional software development captures the user needs during the requirement analysis. The Web makes this endeavour even harder due to the difficulty to determine who these users are. In an attempt to tackle the heterogeneity of the user base, Web Personalization techniques are proposed to guide the users’ experience. In addition, Open Innovation allows organisations to look beyond their internal resources to develop new products or improve existing processes. This thesis sits in between by introducing Open Personalization as a means to incorporate actors other than webmasters in the personalization of web applications. The aim is to provide the technological basis that builds up a trusty environment for webmasters and companion actors to collaborate, i.e. "an architecture of participation". Such architecture very much depends on these actors’ profile. This work tackles three profiles (i.e. software partners, hobby programmers and end users), and proposes three "architectures of participation" tuned for each profile. Each architecture rests on different technologies: a .NET annotation library based on Inversion of Control for software partners, a Modding Interface in JavaScript for hobby programmers, and finally, a domain specific language for end-users. Proof-of-concept implementations are available for the three cases while a quantitative evaluation is conducted for the domain specific language.
Resumo:
In Part I a class of linear boundary value problems is considered which is a simple model of boundary layer theory. The effect of zeros and singularities of the coefficients of the equations at the point where the boundary layer occurs is considered. The usual boundary layer techniques are still applicable in some cases and are used to derive uniform asymptotic expansions. In other cases it is shown that the inner and outer expansions do not overlap due to the presence of a turning point outside the boundary layer. The region near the turning point is described by a two-variable expansion. In these cases a related initial value problem is solved and then used to show formally that for the boundary value problem either a solution exists, except for a discrete set of eigenvalues, whose asymptotic behaviour is found, or the solution is non-unique. A proof is given of the validity of the two-variable expansion; in a special case this proof also demonstrates the validity of the inner and outer expansions.
Nonlinear dispersive wave equations which are governed by variational principles are considered in Part II. It is shown that the averaged Lagrangian variational principle is in fact exact. This result is used to construct perturbation schemes to enable higher order terms in the equations for the slowly varying quantities to be calculated. A simple scheme applicable to linear or near-linear equations is first derived. The specific form of the first order correction terms is derived for several examples. The stability of constant solutions to these equations is considered and it is shown that the correction terms lead to the instability cut-off found by Benjamin. A general stability criterion is given which explicitly demonstrates the conditions under which this cut-off occurs. The corrected set of equations are nonlinear dispersive equations and their stationary solutions are investigated. A more sophisticated scheme is developed for fully nonlinear equations by using an extension of the Hamiltonian formalism recently introduced by Whitham. Finally the averaged Lagrangian technique is extended to treat slowly varying multiply-periodic solutions. The adiabatic invariants for a separable mechanical system are derived by this method.
Resumo:
Hematopoiesis is a well-established system used to study developmental choices amongst cells with multiple lineage potentials, as well as the transcription factor network interactions that drive these developmental paths. Multipotent progenitors travel from the bone marrow to the thymus where T-cell development is initiated and these early T-cell precursors retain lineage plasticity even after initiating a T-cell program. The development of these early cells is driven by Notch signaling and the combinatorial expression of many transcription factors, several of which are also involved in the development of other cell lineages. The ETS family transcription factor PU.1 is involved in the development of progenitor, myeloid, and lymphoid cells, and can divert progenitor T-cells from the T-lineage to a myeloid lineage. This diversion of early T-cells by PU.1 can be blocked by Notch signaling. The PU.1 and Notch interaction creates a switch wherein PU.1 in the presence of Notch promotes T-cell identity and PU.1 in the absence of Notch signaling promotes a myeloid identity. Here we characterized an early T-cell cell line, Scid.adh.2c2, as a good model system for studying the myeloid vs. lymphoid developmental choice dependent on PU.1 and Notch signaling. We then used the Scid.adh.2c2 system to identify mechanisms mediating PU.1 and Notch signaling interactions during early T-cell development. We show that the mechanism by which Notch signaling is protecting pro-T cells is neither degradation nor modification of the PU.1 protein. Instead we give evidence that Notch signaling is blocking the PU.1-driven inhibition of a key set of T-regulatory genes including Myb, Tcf7, and Gata3. We show that the protection of Gata3 from PU.1-mediated inhibition, by Notch signaling and Myb, is important for retaining a T-lineage identity. We also discuss a PU.1-driven mechanism involving E-protein inhibition that leads to the inhibition of Notch target genes. This is mechanism may be used as a lockdown mechanism in pro-T-cells that have made the decision to divert to the myeloid pathway.
Resumo:
This thesis consists of three separate studies of roles that black holes might play in our universe.
In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.
In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.
In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.
Resumo:
[EN] This study presents an applied experience which takes part of a program on prevention of the violence in soccer in school age. The aim was the acquisition of the commitment of the trainers involved in matches considered as non sportive, in the fulfillment of sportive behavior guidelines. To achieve this aim, a meeting was carried out by the trainers of the equipments that led violent incidents in the first round of the league, with the presidents of these equipments, with representatives of the local football Federation and with representatives of the Committee of referees. From this meeting it was intended: 1) to reduce the probability of aggressive and violent incidents; 2) to promote a relation of cooperation between the entities of the teams that led non sportive incidents, and the referee group; and 3) Make the sports context be a protector to prevent non sportive behaviors. The results of this study reflect that the participation had a positive effect in the improvement of the sportsmanship in the return football matches of the league.
Resumo:
We investigate the mechanism of formation of periodic void arrays inside fused silica and BK7 glass irradiated by a tightly focused femtosecond (fs) laser beam. Our results show that the period of each void array is not uniform along the laser propagation direction, and the average period of the void array decreases with increasing pulse number and pulse energy. We propose a mechanism in which a standing electron plasma wave created by the interference of a fs-laser-driven electron wave and its reflected wave is responsible for the formation of the periodic void arrays.
Resumo:
The field of cavity optomechanics, which concerns the coupling of a mechanical object's motion to the electromagnetic field of a high finesse cavity, allows for exquisitely sensitive measurements of mechanical motion, from large-scale gravitational wave detection to microscale accelerometers. Moreover, it provides a potential means to control and engineer the state of a macroscopic mechanical object at the quantum level, provided one can realize sufficiently strong interaction strengths relative to the ambient thermal noise. Recent experiments utilizing the optomechanical interaction to cool mechanical resonators to their motional quantum ground state allow for a variety of quantum engineering applications, including preparation of non-classical mechanical states and coherent optical to microwave conversion. Optomechanical crystals (OMCs), in which bandgaps for both optical and mechanical waves can be introduced through patterning of a material, provide one particularly attractive means for realizing strong interactions between high-frequency mechanical resonators and near-infrared light. Beyond the usual paradigm of cavity optomechanics involving isolated single mechanical elements, OMCs can also be fashioned into planar circuits for photons and phonons, and arrays of optomechanical elements can be interconnected via optical and acoustic waveguides. Such coupled OMC arrays have been proposed as a way to realize quantum optomechanical memories, nanomechanical circuits for continuous variable quantum information processing and phononic quantum networks, and as a platform for engineering and studying quantum many-body physics of optomechanical meta-materials.
However, while ground state occupancies (that is, average phonon occupancies less than one) have been achieved in OMC cavities utilizing laser cooling techniques, parasitic absorption and the concomitant degradation of the mechanical quality factor fundamentally limit this approach. On the other hand, the high mechanical frequency of these systems allows for the possibility of using a dilution refrigerator to simultaneously achieve low thermal occupancy and long mechanical coherence time by passively cooling the device to the millikelvin regime. This thesis describes efforts to realize the measurement of OMC cavities inside a dilution refrigerator, including the development of fridge-compatible optical coupling schemes and the characterization of the heating dynamics of the mechanical resonator at sub-kelvin temperatures.
We will begin by summarizing the theoretical framework used to describe cavity optomechanical systems, as well as a handful of the quantum applications envisioned for such devices. Then, we will present background on the design of the nanobeam OMC cavities used for this work, along with details of the design and characterization of tapered fiber couplers for optical coupling inside the fridge. Finally, we will present measurements of the devices at fridge base temperatures of Tf = 10 mK, using both heterodyne spectroscopy and time-resolved sideband photon counting, as well as detailed analysis of the prospects for future quantum applications based on the observed optically-induced heating.
Resumo:
A periodontite é um processo inflamatório crônico de origem bacteriana mediado por citocinas, em especial, interleucina-1 (IL1) e fator de necrose tumoral (TNFα). Polimorfismos genéticos de IL1 e TNFA têm sido associados com a variação de expressão dessas proteínas, o que poderia justificar as diferenças interindividuais de manifestação da doença. O objetivo do presente estudo foi investigar possíveis associações entre os genes IL1B, IL1RN e TNFA e a suscetibilidade à periodontite agressiva e à periodontite crônica severa. Foram selecionados 145 pacientes do Estado do Rio de Janeiro, 43 com periodontite agressiva (PAgr) (33,1 4,8 anos), 52 com periodontite crônica severa (PCr) (50,6 5,8 anos) e 50 controles (40,1 7,8 anos). Os DNAs genômicos dos integrantes dos grupos PAgr, PCr e controle foram obtidos através da coleta de células epiteliais bucais raspadas da parte interna da bochecha com cotonete. Os SNPs IL1B -511C>T, IL1B +3954C>T e TNFA -1031T>C foram analisados pela técnica de PCR-RFLP, utilizando as enzimas de restrição Ava I Taq I e Bpi I, respectivamente. O polimorfismo de número variável de repetições in tandem (VNTR) no intron 2 do gene IL1RN foi feita pela análise direta dos amplicons. Todos os polimorfismos foram analisados por eletroforese em gel de poliacrilamida 8%. As frequências alélica e genotípica do polimorfismo IL1B +3954C>T no grupo PCr foram significativamente diferentes das observadas no grupo controle (p=0,003 e p=0,041, respectivamente). A freqüência do alelo A2 do polimorfismo IL1RN VNTR intron2 no grupo PAgr foi significativamente maior do que no grupo controle (p=0,035). Não houve associação entre os polimorfismos IL1B -511C>T e TNFA -1031T>C e as periodontites agressiva e crônica. A presença dos alelos 2 nos genótipos combinados de IL1RN VNTR intron2 e IL1B +3954C>T no grupo PCr foi significativamente maior quando comparada ao grupo controle (p=0,045). Entretanto, não se observou associação entre as combinações genotípicas IL1B -511C>T / IL1B +3954C>T e IL1RN VNTR / IL1B -511C>T e a predisposição à doença periodontal. De acordo com os nossos resultados podemos sugerir que, para a população estudada, o polimorfismo IL1B +3954C>T interfere no desenvolvimento da periodontite crônica, enquanto a presença do alelo A2 do polimorfismo IL1RN VNTR intron2 pode ser considerado como indicador de risco para a periodontite agressiva. O presente estudo também nos permite sugerir que a ausência de homozigose dos alelos 1 nos genótipos combinados de IL1RN VNTR intron2 e IL1B +3954C>T pode representar maior suscetibilidade à periodontite crônica severa.