985 resultados para Affinity
Resumo:
The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings.
Resumo:
Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.
Resumo:
During the taxonomic study of the Thelypteridaceae from southeastern Brazil was founded Thelypteris polypodioides (Raddi) C. F. Reed and Thelypteris villosa (Link) C. F. Reed, two rare and poorly known species. The taxonomic position of these species is uncertain. This study presents key, descriptions, illustrations, data on geographical distribution, and comments for both species, as well as comments on taxonomic affinity between the two species and Thelypteris subgenera.
Resumo:
Culture supernatant of Staphylococcus aureus 722 in 3% triptone plus 1% yeast extract was used for EEA purification, proceeding comparison between dye ligand Red A affinity chromatography and classic chromatography. The capture of SEA with Amberlite CG-50 allowed rapid enterotoxin concentration from the culture supernatant. However, the ratio of 15 mg of the resin to a total of 150 mg of the toxin satured the resin, giving only 10 to 30% of SEA recuperation from the supernatant. The elution of concentrated material throught the Red A column resulted in a recovery of 60,87% of the toxin, and required 76 hours, indicating advantage on classic chromatography. Ion exchange column plus gel filtration recovered only 6,5 % of the SEA, and required 114 hours to conclude the procedure. The eletrophoresis of purified SEA indicated high grade of toxin obtained from Red A column, with 90 % of purity, compared to 60 % of classic column.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
The South American fur seal (Arctocephalus australis) is an amphibious marine mammal distributed along the Atlantic and Pacific coasts of South America. The species is well adjusted to different habitats due to the morphology of its fin-like members and due to some adaptations in their integumentary system. Immunohistochemical studies are very important to evaluate the mechanisms of skin adaptation due the differential expression of the antigens present in the tissue depending of the region of the body surface. However, its strongly pigmented (melanin) epidermis prevents the visualization of the immuno-histochemical chromogens markers. In this study a melanin bleaching method was developed aimed to allow the visualization of the chromogens without interfering in the antigen-antibody affinity for immunohistochemistry. The analysis of PCNA (proliferating cell nuclear antigen) index in the epidermis of A. australis by immunohistochemistry with diaminobenzidine (DAB) as chromogen was used to test the method. The bleaching of the melanin allowed to obtain the cell proliferation index in epidermis and to avoid false positive results without affecting the immunohistochemical results.
Resumo:
Twenty areas from eight Brazilian states were compared according to a list of 224 species of Poaceae. In order to determinate affinity patterns between the areas, a binary matrix was submitted to cluster and ordination analysis. The patterns found were then faced to climate and geographic position. The scores corresponding to the areas obtained from the cluster analysis showed a strong correlation to temperature. The scores corresponding to the species suggest a gradient that associates distribution patterns to the photosynthetic pathway (C3 or C4). The current results suggest that the traditional classification of the Southern American grasslands might require some modification in order to be broadly applicable in the Brazilian context.
Resumo:
A enzima nitrato redutase (NR) catalisa a redução do nitrato a nitrito e controla a taxa de assimilação do nitrato. O ensaio in vitro da nitrato redutase foi otimizado para a linhagem selvagem (marrom, MA) e para a linhagem deficiente em ficoeritrina (verde-clara, VC) de Hypnea musciformis. As duas linhagens foram cultivadas em temperatura de 23 ± 2°C, fotoperíodo de 14 horas, irradiância de 60-90µmol fótons m-2s-1, e meio composto por água do mar esterilizada (30ups) enriquecida com a solução de von Stosch na concentração de 50% (VSES/2). As condições ótimas de ensaio para ambas as linhagens foram: 40µM de NADH; 10min de incubação do extrato bruto (EB) e 100µL de EB. A atividade ótima da NR ocorreu em 4 e 2mM de nitrato para a linhagem VC e MA, respectivamente. As linhagens VC e MA apresentaram, respectivamente, constante aparente de Michaelis-Menten (K M) para NADH de 0,2068 e 0,0837 µM, e K M para nitrato de 0,0492 e 0,0294mM. Os resultados indicam que a NR da linhagem MA tem maior afinidade pelo substrato do que a NR da linhagem VC de H. musciformis. Os experimentos para avaliar os efeitos da disponibilidade de nitrato (5 a 105µM) e nitrato e fosfato (0,5 a 25,5µM, com a relação N:P de 4:1) mostraram que a atividade da NR das linhagens VC e MA não aumentou com a adição de nitrato no meio, o que pode estar relacionado com o estado nutricional dessas algas. A atividade da NR foi maior nos tratamentos com adição de fosfato do que naqueles com adição de apenas nitrato, indicando que esse nutriente é importante para os processos metabólicos relacionados a atividade da NR.
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the development of novel drugs against schistosomiasis, a neglected tropical disease that affects about 200 million people worldwide. In the present work, enzyme kinetic studies were carried out in order to determine the potency and mechanism of inhibition of a series of SmPNP inhibitors. In addition to the biochemical investigations, crystallographic and molecular modeling studies revealed important molecular features for binding affinity towards the target enzyme, leading to the development of structure-activity relationships (SAR).
Resumo:
A motivação principal deste artigo é demonstrar que a metapsicologia do humor se oferece, na obra freudiana, como o paradigma a partir do qual se podem compreender as operações em jogo no processo da sublimação. Percebe-se, assim, que a associação entre duas problemáticas sombreadas pela tradição psicanalítica - o humor e a sublimação - contribui para o esclarecimento de ambas. Ao longo do texto são enfatizados o trabalho de desidealização promovido pelo humor, a modalidade identificatória envolvida na sua produção, a referência do humor negro à condição de orfandade que caracteriza o sujeito moderno, bem como a política que acompanha a anunciação do dito humorístico e, mesmo, do Witz (espirituosidade) de modo geral. Finalmente, demonstra-se a filiação do humor ao realismo grotesco, amplamente analisado por Mikhail Bakhtin, indicando como, na enunciação humorística, é preciso considerar a participação da alegria, sua força motriz.
Resumo:
The polyelectrolyte complex (PEC) resulting from the reaction of sodium carboxymethylcellulose (CMC) and N,N,N-trimethylchitosan hydrochloride (TMQ) was prepared and then characterized by infrared spectroscopy and energy dispersive X rays analysis. The interactions involving the PEC and Cu2+ ions, humic acid and atrazine in aqueous medium were studied. From the adsorption isotherms the maximum amount adsorbed (Xmax) was determined as 61 mg Cu2+/g PEC, 171 mg humic acid/g PEC and 5 mg atrazine/g PEC. The results show that the CMC/TMQ complex has a high affinity for the studied species, indicating its potential application to remove them from aqueous media.
Resumo:
The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the β-glycosidase from Spodoptera frugiperda (Sfβgly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfβgly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl β-galactoside and p-nitrophenyl β-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfβgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES‡ (enzyme-transition state complex) of the double mutations (∆∆G‡xy) is not the sum of the effects resulting from the single mutations (∆∆G‡x and ∆∆G‡y). This difference in ∆∆G‡ indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆G‡xy. Crystallographic data on β-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.
Resumo:
cDNA coding for two digestive lysozymes (MdL1 and MdL2) of the Musca domestica housefly was cloned and sequenced. MdL2 is a novel minor lysozyme, whereas MdL1 is the major lysozyme thus far purified from M. domestica midgut. MdL1 and MdL2 were expressed as recombinant proteins in Pichia pastoris, purified and characterized. The lytic activities of MdL1 and MdL2 upon Micrococcus lysodeikticus have an acidic pH optimum (4.8) at low ionic strength (μ = 0.02), which shifts towards an even more acidic value, pH 3.8, at a high ionic strength (μ = 0.2). However, the pH optimum of their activities upon 4-methylumbelliferyl N-acetylchitotrioside (4.9) is not affected by ionic strength. These results suggest that the acidic pH optimum is an intrinsic property of MdL1 and MdL2, whereas pH optimum shifts are an effect of the ionic strength on the negatively charged bacterial wall. MdL2 affinity for bacterial cell wall is lower than that of MdL1. Differences in isoelectric point (pI) indicate that MdL2 (pI = 6.7) is less positively charged than MdL1 (pI = 7.7) at their pH optima, which suggests that electrostatic interactions might be involved in substrate binding. In agreement with that finding, MdL1 and MdL2 affinities for bacterial cell wall decrease as ionic strength increases.
Resumo:
Background: Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction ( LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results: Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion: By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa.
Resumo:
Background: In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX) from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties. Results: The highest GOX expression levels (1552 units of secreted protein per gram dry cell weight) were achieved using an episomal system, in which the INU1 promoter and terminator were used to drive heterologous gene expression, together with the INU1 prepro sequence, which was employed to drive secretion of the enzyme. In all cases, GOX was mainly secreted, remaining either in the periplasmic space or in the culture supernatant. Whereas the use of genetic elements from Saccharomyces cerevisiae to drive heterologous protein expression led to higher expression levels in K. lactis than in K. marxianus, the use of INU1 genetic elements clearly led to the opposite result. The biochemical characterization of GOX confirmed the correct expression of the protein and showed that K. marxianus has a tendency to hyperglycosylate the protein, in a similar way as already observed for other yeasts, although this tendency seems to be smaller than the one of e. g. K. lactis and S. cerevisiae. Hyperglycosylation of GOX does not seem to affect its affinity for the substrate, nor its activity. Conclusions: Taken together, our results indicate that K. marxianus is indeed a good host for the expression of heterologous proteins, not only for its physiological properties, but also because it correctly secretes and folds these proteins.