960 resultados para Adsorbents, Nanofibers, Radioactive Contaminants, Titanate, Removal of Radioactive Ions
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Tissue transglutaminase (TG2) is a multifunctional protein cross-linking enzyme that has been implicated in apoptotic cell clearance but is also important in many other cell functions including cell adhesion, migration and monocyte to macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4 and β1 and β3 integrins. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise role of TG2 in apoptotic cell clearance remains ill-defined. Our work addresses the role of macrophage extracellular TG2 in apoptotic cell corpse clearance. Here we reveal TG2 expression and activity (cytosolic and cell surface) in human macrophages and demonstrate that inhibitors of protein crosslinking activity reduce macrophage clearance of dying cells. We show also that cell-impermeable TG2 inhibitors significantly inhibit the ability of macrophages to migrate and clear apoptotic cells through reduced macrophage recruitment to, and binding of, apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus our data define a role for TG2 activity at the surface of human macrophages in multiple stages of AC clearance and we propose that TG2, in association with heparan sulphates, may exert its effect on AC clearance via a mechanism involving the crosslinking of CD44.
Resumo:
Poor agreement between 3H/3He ages and CFC-11 and CFC-12 ages suggests that CFCs may not be conservative tracers in the Everglades National Park. 3H/3He ages were used to calculate the expected concentration of CFC-11 and CFC-12 in groundwater from wells 2 to 73 m deep. The expected concentrations of CFCs were compared to the measured concentrations and plots of the % CFC-12 and CFC-11 remaining offered no evidence that significant CFC removal was occurring in the groundwater at depths ≥2 m, suggesting that CFC removal occurs at shallower depths. Except where CFC contamination was suspected, CFC-11, CFC-12 and CFC-113 concentrations in fresh surface water were nearly always below solubility equilibrium with the atmosphere. Measurements of CFC-11, CFC-12 and CFC-113 in pore water indicate a 50–90% decrease in concentration 5 cm below the groundwater–surface water (GW–SW) interface. In the same 5 cm interval CH4 concentrations increased by 300–1000%. This suggested that CFCs were removed at the GW–SW interface, possibly by methane-producing bacteria. CFC derived recharge ages should therefore be viewed with caution when recharging water percolates through anoxic methanogenic sediments.
Resumo:
A pilot scale multi-media filtration system was used to evaluate the effectiveness of filtration in removing petroleum hydrocarbons from a source water contaminated with diesel fuel. Source water was artificially prepared by mixing bentonite clay and tap water to produce a turbidity range of 10-15 NTU. Diesel fuel concentrations of 150 ppm or 750 ppm were used to contaminate the source water. The coagulants used included Cat Floc K-10 and Cat Floc T-2. The experimental phase was conducted under direct filtration conditions at constant head and constant rate filtration at 8.0 gpm. Filtration experiments were run until the filter reached its clogging point as noted by a measured peak pressure loss of 10 psi. The experimental variables include type of coagulant, oil concentration and source water. Filtration results were evaluated based on turbidity removal and petroleum hydrocarbon (PHC) removal efficiency as measured by gas chromatography. Experiments indicated that clogging was controlled by the clay loading on the filter and that inadequate destabilization of the contaminated water by the coagulant limited the PHC removal. ^
Resumo:
We analyzed the effects of partial fat pad removal on retroperitoneal and epididymal fat depots and carcass metabolism of control (C) and MSG-obese (M) rats. Three-month-old C and M male Wistar rats were submitted to either partial surgical excision of epididymal and retroperitoneal fat tissue (lipectomy, L) or sham surgery (S) and studied after 7 or 30 days. Retroperitoneal and epididymal tissue re-growth after lipectomy was not observed, as indicated by the low pads weight of the L groups. The lipolysis rate was stimulated in LC7 and LM7, probably due to surgical stress and low insulin levels. In LM7, but not in LC7, in vivo lipogenesis rate increased in retroperitoneal and epididymal fat tissue, as did the diet-derived lipid accumulation in epididymal fat tissue. Although these local increases were no longer present in LM30, this group showed a large increase in the percentage of small area adipocytes in both pads as well as increased carcass lipogenesis rate. The present data showed that the partial removal of fat depots affected the metabolism of control and MSG-obese rats differently. In the obese animals only, it stimulated both local and carcass lipogenesis rate as well as adipocyte differentiation, i.e. responses likely to favor excised tissue re-growth and/or compensatory growth of non-excised depots.
Resumo:
Hypothesis: The dye adsorption with chitosan is considered an eco-friendly alternative technology in relation to the existing water treatment technologies. However, the application of chitosan for dyes removal is limited, due to its low surface area and porosity. Then we prepared a chitosan scaffold with a megaporous structure as an alternative adsorbent to remove food dyes from solutions. Experiments: The chitosan scaffold was characterized by infrared spectroscopy, scanning electron microscopy and structural characteristics. The potential of chitosan scaffold to remove five food dyes from solutions was investigated by equilibrium isotherms and thermodynamic study. The scaffold–dyes interactions were elucidated, and desorption studies were carried out. Findings: The chitosan scaffold presented pore sizes from 50 to 200 lm, porosity of 92.2 ± 1.2% and specific surface area of 1135 ± 2 m2 g 1. The two-step Langmuir model was suitable to represent the equilibrium data. The adsorption was spontaneous, favorable, exothermic and enthalpy-controlled process. Electrostatic interactions occurred between chitosan scaffold and dyes. Desorption was possible with NaOH solution (0.10 mol L 1). The chitosan megaporous scaffold showed good structural characteristics and high adsorption capacities (788–3316 mg g 1).
Resumo:
Economical achievement of optimal growth in developing countries may lead to sustainable poverty reduction. Agricultural activities play an important role in economy and human being welfare, which leads to establishment of food security and quality. Aquaculture products in developing countries share 51.4 percent of total agricultural production and 241 percent in developed countries. Therefore undoubtedly food production by means of quality and quantity has to be increased .The history of shrimp production goes back to 500 years ago. Today 50 countries of the world produce shrimp. In Islamic Republic of Iran shrimp production started since 1992 in the coastal region of Persian Gulf. The shrimp culture farms can be classified in to 4 different categories; extensive, semi-extensive, intensive and super intensive. Global ecological maintenance is one of the major concerns of authorities Human manipulation of nature is the most destructive activity. Industrial sewage leakage in to the rivers and water sources is a big issue that causes reduction in the aquatic population. Heavy metals have an inhibitory effect in the production and growth of sea life. Human intake of food treated with anti-microbial cause's allergy, hypersensitivity and develops microbial resistance. Organochlorine compounds contamination may found in hepatopancreatic tissue of aquatic products, Arsenic may transfer to man via plant and animal product contamination.
Resumo:
Post-consumer cooking oil and soft drink PET bottles (PEToil and PETsoft drink) were ground and washed only with water (conventional washing). The polymer was then chemically washed (10min in an aqueous solution of sodium hydroxide 5mol center dot L-1 at 90 degrees C) and rinsed. The materials before and after chemical washing were characterized by intrinsic viscosity, differential scanning calorimetry, thermogravimetry, elemental analysis, scanning electron microscopy with X-ray spectrum microanalysis, and gas chromatography coupled to mass spectrometry. The results indicated that conventionally washed PEToil is the material that most differs among the four tested ones, and that the other three are more similar to each other and to what is expected for pure PET. For example, the composition of PEToil washed only in water contained 30 volatile organic compounds, 5 nonvolatile compounds, and 7 metals, while PETsoft drink washed conventionally and chemically contained 5 volatile organic compounds and no metal or nonvolatile organic compounds.
Resumo:
[EN] This paper describes, for the first time, the use of alginate hydrogels as miniaturised microvalves within microfluidic devices. These biocompatible and biodegradable microvalves are generated in situ and on demand, allowing for microfluidic flow control. The microfluidic devices were fabricated using an origami inspired technique of folding several layers of cyclic olefin polymer followed by thermocompression bonding. The hydrogels can be dehydrated at mild temperatures, 37◦C, to slightly open the microvalve and chemically erased using an ethylenediaminetetraacetic acid disodium salt (EDTA) solution, to completely open the channel, ensuring the reusability of the whole device and removal of damaged or defective valves for subsequent regeneration.
Resumo:
Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 −). The concentration of BrO3 − was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 − adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g−1. The adsorption kinetics of BrO3 − adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.
Resumo:
The remediation of paracetamol (PA), an emerging contaminant frequently found in wastewater treatment plants, has been studied in the low concentration range (0.3–10 mg L−1) using as adsorbent a biomass-derived activated carbon. PA uptake of up to 100 mg g−1 over the activated carbon has been obtained, with the adsorption isotherms being fairly explained by the Langmuir model. The application of Reichemberg and the Vermeulen equations to the batch kinetics experiments allowed estimating homogeneous and heterogeneous diffusion coefficients, reflecting the dependence of diffusion with the surface coverage of PA. A series of rapid small-scale column tests were carried out to determine the breakthrough curves under different operational conditions (temperature, PA concentration, flow rate, bed length). The suitability of the proposed adsorbent for the remediation of PA in fixed-bed adsorption was proven by the high PA adsorption capacity along with the fast adsorption and the reduced height of the mass transfer zone of the columns. We have demonstrated that, thanks to the use of the heterogeneous diffusion coefficient, the proposed mathematical approach for the numerical solution to the mass balance of the column provides a reliable description of the breakthrough profiles and the design parameters, being much more accurate than models based in the classical linear driving force.