977 resultados para Active-Layer Dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding of the Atmospheric Boundary Layer (ABL) is imperative in the arena of the monsoon field. Here, the features of the ABL are studied employing Conserved Variable Analysis (CVA) using equivalent potential temperature and humidity. In addition, virtual potential temperature and wind are used during active and weak phases of monsoon. The analysis is carried out utilising the radiosonde observations during the monsoon months for two stations situated in the west coast of India. All these parameters show considerable variations during active and weak monsoon phases in both the stations. The core speed and core height vary with these epochs. The core speed is found to be more than 38 knots in the active monsoon phase around 1.2 km over Trivandrum and around 2 km over Mangalore. But during weak monsoon phase the core wind speed is decreased and core height is elevated over both stations. The wind direction shows an additional along shore component during weak monsoon period. The Convective Boundary Layer (CBL) height shows increase during weak monsoon phase over both stations due to less cloudiness and subsequent insolation. The CBL height during the southwest monsoon is more over Mangalore and is attributed by the orographic lifting in the windward side of the Western Ghats while the influence of the Ghats is less over Trivandrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oscillations in the Atmospheric Boundary Layer (ABL) are important because the transport mechanism from the surface to the upper atmosphere is governed by the ABL characteristics. The study was carried out using wind and temperature data observed at surface, 925 hPa and 850 hPa levels over Cochin and the different frequencies embedded in the boundary layer parameters are identified by employing wavelet technique. Surface boundary layer characteristics over the monsoon region are closely linked to the upper layer monsoon features. In this perception it is important to study the various oscillations in the surface boundary layer and the layer above. It is found that the wind and temperature at different levels show oscillations in Quasi Biweekly Mode (QBM) and Intra Seasonal Oscillation (ISO) bands as observed in a typical monsoon system. Amplitude of the oscillation varies with height. The amplitude of the QBM periodicity is more in the surface levels but in the upper levels the amplitude of the ISO periodicity is more than that of the QBM. From this, it is obvious that the controlling mechanism of QBM band is surface parameters such as surface friction and that for ISO band is associated with the active-break cycles of monsoon system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric surface boundary layer parameters vary anomalously in response to the occurrence of annular solar eclipse on 15th January 2010 over Cochin. It was the longest annular solar eclipse occurred over South India with high intensity. As it occurred during the noon hours, it is considered to be much more significant because of its effects in all the regions of atmosphere including ionosphere. Since the insolation is the main driving factor responsible for the anomalous changes occurred in the surface layer due to annular solar eclipse, occurred on 15th January 2010, that played very important role in understanding dynamics of the atmosphere during the eclipse period because of its coincidence with the noon time. The Sonic anemometer is able to give data of zonal, meridional and vertical wind as well as the air temperature at a temporal resolution of 1 s. Different surface boundary layer parameters and turbulent fluxes were computed by the application of eddy correlation technique using the high resolution station data. The surface boundary layer parameters that are computed using the sonic anemometer data during the period are momentum flux, sensible heat flux, turbulent kinetic energy, frictional velocity (u*), variance of temperature, variances of u, v and w wind. In order to compare the results, a control run has been done using the data of previous day as well as next day. It is noted that over the specified time period of annular solar eclipse, all the above stated surface boundary layer parameters vary anomalously when compared with the control run. From the observations we could note that momentum flux was 0.1 Nm 2 instead of the mean value 0.2 Nm-2 when there was eclipse. Sensible heat flux anomalously decreases to 50 Nm 2 instead of the mean value 200 Nm 2 at the time of solar eclipse. The turbulent kinetic energy decreases to 0.2 m2s 2 from the mean value 1 m2s 2. The frictional velocity value decreases to 0.05 ms 1 instead of the mean value 0.2 ms 1. The present study aimed at understanding the dynamics of surface layer in response to the annular solar eclipse over a tropical coastal station, occurred during the noon hours. Key words: annular solar eclipse, surface boundary layer, sonic anemometer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the results of investigations on the potential of spray pyrolysis technique in depositing electron selective layer over larger area for the fabrication of inverted bulk-heterojunction polymer solar cells. The electron selective layer (In2S3) was deposited using spray pyrolysis technique and the linear heterojunction device thus fabricated exhibited good uniformity in photovoltaic properties throughout the area of the device. An MEH-PPV:PCBM inverted bulk-heterojunction device with In2S3 electron selective layer (active area of 3.25 3.25 cm2) was also fabricated and tested under indoor and outdoor conditions. Fromthe indoor measurements employing a tungsten halogen lamp (50mW/cm2 illumination), an opencircuit voltage of 0.41V and a short-circuit current of 5.6mA were obtained. On the other hand, the outdoor measurements under direct sunlight (74mW/cm2) yielded an open-circuit voltage of 0.46V and a short-circuit current of 9.37mA

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The control of aerial gymnastic maneuvers is challenging because these maneuvers frequently involve complex rotational motion and because the performer has limited control of the maneuver during flight. A performer can influence a maneuver using a sequence of limb movements during flight. However, the same sequence may not produce reliable performances in the presence of off-nominal conditions. How do people compensate for variations in performance to reliably produce aerial maneuvers? In this report I explore the role that passive dynamic stability may play in making the performance of aerial maneuvers simple and reliable. I present a control strategy comprised of active and passive components for performing robot front somersaults in the laboratory. I show that passive dynamics can neutrally stabilize the layout somersault which involves an "inherently unstable" rotation about the intermediate principal axis. And I show that a strategy that uses open loop joint torques plus passive dynamics leads to more reliable 1 1/2 twisting front somersaults in simulation than a strategy that uses prescribed limb motion. Results are presented from laboratory experiments on gymnastic robots, from dynamic simulation of humans and robots, and from linear stability analyses of these systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radar has been applied to the study of insect migration for almost 40 years, but most entomological radars operate at X-band (9.4 GHz, 3.2 cm wavelength), and can only detect individuals of relatively large species, such as migratory grasshoppers and noctuid moths, over all of their flight altitudes. Many insects (including economically important species) are much smaller than this, but development of the requisite higher power and/or higher frequency radar systems to detect these species is often prohibitively expensive. In this paper, attention is focussed upon the uses of some recently-deployed meteorological sensing devices to investigate insect migratory flight behaviour, and especially its interactions with boundary layer processes. Records were examined from the vertically-pointing 35 GHz ‘Copernicus’ and 94 GHz ‘Galileo’ cloud radars at Chilbolton (Hampshire, England) for 12 cloudless and convective occasions in summer 2003, and one of these occasions (13 July) is presented in detail. Insects were frequently found at heights above aerosol particles, which represent passive tracers, indicating active insect movement. It was found that insect flight above the convective boundary layer occurs most often during the morning. The maximum radar reflectivity (an indicator of aerial insect biomass) was found to be positively correlated with maximum screen temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mid-latitude weather systems are key contributors to the transport of atmospheric water vapour, but less is known about the role of the boundary layer in this transport. We expand a conceptual model of dry boundary-layer structure under synoptic systems to include moist processes, using idealised simulations of cyclone waves to investigate the three-way interaction between the boundary layer, atmospheric moisture and large-scale dynamics. Forced by large-scale thermal advection, boundary-layer structures develop over large areas, analogous to the daytime convective boundary layer, the nocturnal stable boundary layer and transitional regimes between these extremes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a remote sensing method for measuring the internal interface height field in a rotating, two-layer annulus laboratory experiment. The method is non-invasive, avoiding the possibility of an interaction between the flow and the measurement device. The height fields retrieved are accurate and highly resolved in both space and time. The technique is based on a flow visualization method developed by previous workers, and relies upon the optical rotation properties of the working liquids. The previous methods returned only qualitative interface maps, however. In the present study, a technique is developed for deriving quantitative maps by calibrating height against the colour fields registered by a camera which views the flow from above. We use a layer-wise torque balance analysis to determine the equilibrium interface height field analytically, in order to derive the calibration curves. With the current system, viewing an annulus of outer radius 125 mm and depth 250 mm from a distance of 2 m, the inferred height fields have horizontal, vertical and temporal resolutions of up to 0.2 mm, 1 mm and 0.04 s, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inertia-gravity waves exist ubiquitously throughout the stratified parts of the atmosphere and ocean. They are generated by local velocity shears, interactions with topography, and as geostrophic (or spontaneous) adjustment radiation. Relatively little is known about the details of their interaction with the large-scale flow, however. We report on a joint model/laboratory study of a flow in which inertia-gravity waves are generated as spontaneous adjustment radiation by an evolving large-scale mode. We show that their subsequent impact upon the large-scale dynamics is generally small. However, near a potential transition from one large-scale mode to another, in a flow which is simultaneously baroclinically-unstable to more than one mode, the inertia-gravity waves may strongly influence the selection of the mode which actually occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Case study simulations with idealized tracers have been used to determine the relationship between the dynamics and conceptual representations of different midlatitude frontal systems and the amount, distribution, and time scale of boundary layer ventilation by these systems. The key features of ventilation by a kata– and ana–cold frontal system are found to be quantitatively and also often qualitatively similar to the main ventilation pathways, which are the conveyor belts, cloud head, and other convection. The conveyor belts and cloud head occur within cloud, implying that they can be identified using satellite imagery. Differences in the transport by the two systems can be related to their conceptual representations and include a sensitive dependence on the diurnal cycle for the kata- but not the ana-cold frontal case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing areas of altered wetland are being restored by re-flooding the soil. Evidence in the literature indicates that this practice can induce the redox-mediated release of soil nutrients, thereby increasing the risk of diffuse water pollution. However, for the sake of improving wedand management decisions, there is a need for more detailed studies of the underlying relationship between the hydrological and redox dynamics that explain this risk; this is particularly the case in agricultural peatlands that are commonly targeted for the creation of lowland wet grassland. A 12-month field study was conducted to evaluate the relationship between hydrological fluctuations and soil redox potential (Eh) in a nutrient-rich peat field (32 g N kg(-1) and 1100 mg P kg(-1) in the surface 0-30 cm soil) that had been restored as lowland wet grassland from intensive arable production. Field tensiometers were installed at the 30-, 60- and 90-cm soil depths, and Pt electrodes at the 10-, 30-, 60- and 90-cm depths, for daily logging of soil water tension and Eh, respectively. The values for soil water tension displayed a strong negative relationship (P < 0.001) with monthly dip well observations of water table height. Calculations of soil water potential from the logged tension values were used, therefore, to provide a detailed profile of field water level and, together with precipitation data, explained some of the variation in Eh. For example, during the summer, alternating periods of aerobism (Eh > 330 mV) in the surface, 0-10 cm layer of peat coincided with intense precipitation events. Redox potential throughout the 30-100 cm profile also fluctuated seasonally; indeed, at all depths Eh displayed a strong, negative relationship (P < 0.001) with water table height over the 12-month study period. However, Eh throughout the 30-100 cm profile remained relatively low (< 230 mV), indicating permanently reduced conditions that are associated with denitrification and reductive dissolution of Fe-bound P. The implications of these processes in the N- and P-rich peat for wetland plant diversity and water quality are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The restoration of wetlands as bird habitats often involves the maintenance of a fluctuating water regime by careful, localised ditch water management using pumps and sluices. However, there is evidence in the literature to Suggest that alternate flood/drainage cycles can accelerate nutrient cycling and transport within the soil and, therefore, pose a threat to water quality through the process of eutrophication. This study focused on the dynamics and losses of soil P in a recently re-wetted, eutrophic fen peat developed on alluvium ill South west England. During the 2-year Study (2001 and 2002), soil water tensiometry revealed that the field water table (fluctuating annually between +20 and 60 cm relative to ground level) was extensively influenced across most of the 8.4 ha field site by the management of the adjacent ditch water levels. This conservation-led, prescribed water balance was facilitated by the high hydraulic conductivity (1.1 x 10(-s) ms(-1)) of the lower (70-140 cm), degraded layer of peat. However, only during a 7-day period of water table drawdown by intermittent pump drainage, approximately 45 g ha(-1) of dissolved reactive P (DRP) entered the pumped ditch from the field via this degraded layer. Summer rainfall events >35 mm d(-1) also coincided with significant peaks ill ditch water P concentration (up to 200 mu g L-1 DRP). Even larger peaks (Up to 700 mu g L-1 DRP) Occurred With the annual onset of autumn reflooding. These episodic P loss events pose a serious potential threat to biological water quality. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intraseasonal variability (ISV) of the Indian summer monsoon is dominated by a 30–50 day oscillation between “active” and “break” events of enhanced and reduced rainfall over the subcontinent, respectively. These organized convective events form in the equatorial Indian Ocean and propagate north to India. Atmosphere–ocean coupled processes are thought to play a key role the intensity and propagation of these events. A high-resolution, coupled atmosphere–mixed-layer-oceanmodel is assembled: HadKPP. HadKPP comprises the Hadley Centre Atmospheric Model (HadAM3) and the K Profile Parameterization (KPP) mixed-layer ocean model. Following studies that upper-ocean vertical resolution and sub-diurnal coupling frequencies improve the simulation of ISV in SSTs, KPP is run at 1 m vertical resolution near the surface; the atmosphere and ocean are coupled every three hours. HadKPP accurately simulates the 30–50 day ISV in rainfall and SSTs over India and the Bay of Bengal, respectively, but suffers from low ISV on the equator. This is due to the HadAM3 convection scheme producing limited ISV in surface fluxes. HadKPP demonstrates little of the observed northward propagation of intraseasonal events, producing instead a standing oscillation. The lack of equatorial ISV in convection in HadAM3 constrains the ability of KPP to produce equatorial SST anomalies, which further weakens the ISV of convection. It is concluded that while atmosphere–ocean interactions are undoubtedly essential to an accurate simulation of ISV, they are not a panacea for model deficiencies. In regions where the atmospheric forcing is adequate, such as the Bay of Bengal, KPP produces SST anomalies that are comparable to the Tropical Rainfall Measuring Mission Microwave Imager (TMI) SST analyses in both their magnitude and their timing with respect to rainfall anomalies over India. HadKPP also displays a much-improved phase relationship between rainfall and SSTs over a HadAM3 ensemble forced by observed SSTs, when both are compared to observations. Coupling to mixed-layer models such as KPP has the potential to improve operational predictions of ISV, particularly when the persistence time of SST anomalies is shorter than the forecast lead time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.