838 resultados para Active learning methods
Resumo:
RESUMO:As Metas de Aprendizagem (MA) surgem em 2009 como o culminar de várias reformas curriculares, feitas avulsamente e com pouca articulação entre si. Sendo facultativas até 2013, este seria o momento ideal indagar se os professores de Educação Física as conhecem, o que pensam sobre elas, como as integram no seu planeamento individual / de grupo, o que se constitui como objectivo do estudo. Sendo um instrumento de Desenvolvimento Curricular multifacetado, apoiámo-nos numa Literatura que, para além de uma breve contextualização histórica, abordasse três áreas nucleares: as próprias Metas de Aprendizagem, o Planeamento e a Avaliação. Para concretizar os objectivos, foi testado e aplicado um questionário a 45 indivíduos, distribuído aleatoriamente, e cujas respostas foram sujeitas a tratamento estatístico. Não sendo uma amostra representativa, logo, impassível de extrapolação, obtiveram-se as seguintes conclusões: a maioria dos professores conhece e concorda com o documento; a maioria dos 33 indivíduos que conheciam as MA, revelou uma posição crítica muito positiva referindo como vantagens o apoio ao currículo e a uniformização do ensino, afirmou usar as MA no seu planeamento individual / grupo e manifestou-se unanimemente satisfeito com a sua aplicação. Os discordantes focam-se mais em questões de princípio do que na organização do documento.ABSTRACT: The Learning Methods (LM), arise in 2009 as the culmination of several curricular reforms, made piecemeal, with little coordination between them. Optional until 2013, this would be the ideal time to investigate whether the physical education teachers know them, what they think about them, as part of their planning in individual / group, which is the objective of the study. Being a multi-faceted tool for Curriculum Development, we support a literature that, apart from a brief historical background, addresses three core areas: their own Learning Methods, planning and evaluation. To achieve the objectives, it was tested and applied a questionnaire to 45 randomly selected individuals, and the answers were subjected to statistical analysis. Not being a representative sample, so impassive extrapolation, we obtained the following conclusions: most teachers know and agree with the document; most of the 33 individuals who knew the LM revealed a critical position as a very positive advantages referring to the curriculum and support standardization of education, said to use the LM in their planning individual / group and is unanimously expressed satisfaction with their application. The discordant focus more on issues of principle than in the organization of the document.
Resumo:
Most active-contour methods are based either on maximizing the image contrast under the contour or on minimizing the sum of squared distances between contour and image 'features'. The Marginalized Likelihood Ratio (MLR) contour model uses a contrast-based measure of goodness-of-fit for the contour and thus falls into the first class. The point of departure from previous models consists in marginalizing this contrast measure over unmodelled shape variations. The MLR model naturally leads to the EM Contour algorithm, in which pose optimization is carried out by iterated least-squares, as in feature-based contour methods. The difference with respect to other feature-based algorithms is that the EM Contour algorithm minimizes squared distances from Bayes least-squares (marginalized) estimates of contour locations, rather than from 'strongest features' in the neighborhood of the contour. Within the framework of the MLR model, alternatives to the EM algorithm can also be derived: one of these alternatives is the empirical-information method. Tracking experiments demonstrate the robustness of pose estimates given by the MLR model, and support the theoretical expectation that the EM Contour algorithm is more robust than either feature-based methods or the empirical-information method. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Active learning plays a strong role in mathematics and statistics, and formative problems are vital for developing key problem-solving skills. To keep students engaged and help them master the fundamentals before challenging themselves further, we have developed a system for delivering problems tailored to a student‟s current level of understanding. Specifically, by adapting simple methodology from clinical trials, a framework for delivering existing problems and other illustrative material has been developed, making use of macros in Excel. The problems are assigned a level of difficulty (a „dose‟), and problems are presented to the student in an order depending on their ability, i.e. based on their performance so far on other problems. We demonstrate and discuss the application of the approach with formative examples developed for a first year course on plane coordinate geometry, and also for problems centred on the topic of chi-square tests.
Resumo:
The study explores what happens to teachers practice and ’ professional identity when they adopt a collaborative action research approach to teaching and involve external creative partners and a university mentor. The teachers aim to nurture and develop the creative potential of their learners through empowering them to make decisions for themselves about their own progress and learning directions. The teachers worked creatively and collaboratively designing creative teaching and learning methods in support of pupils with language and communication difficulties. The respondents are from an English special school, primary school and girls secondary school. A mixed methods methodology is adopted. Gains in teacher confidence and capability were identified in addition to shifts in values that impacted directly on their self-concept of what it is to be an effective teacher promoting effective learning. The development of their professional identities within a team ethos included them being able to make decisions about learning that are based on the educational potential of learners that they proved resulted in elevated standards achieved by this group of learners. They were able to justify their actions on established educational principles. Tensions however were revealed between what they perceived as their normal required professionalism imposed by external agencies and the enhanced professionalism experienced working through the project where they were able to integrate theory and practice.
Resumo:
Generally classifiers tend to overfit if there is noise in the training data or there are missing values. Ensemble learning methods are often used to improve a classifier's classification accuracy. Most ensemble learning approaches aim to improve the classification accuracy of decision trees. However, alternative classifiers to decision trees exist. The recently developed Random Prism ensemble learner for classification aims to improve an alternative classification rule induction approach, the Prism family of algorithms, which addresses some of the limitations of decision trees. However, Random Prism suffers like any ensemble learner from a high computational overhead due to replication of the data and the induction of multiple base classifiers. Hence even modest sized datasets may impose a computational challenge to ensemble learners such as Random Prism. Parallelism is often used to scale up algorithms to deal with large datasets. This paper investigates parallelisation for Random Prism, implements a prototype and evaluates it empirically using a Hadoop computing cluster.
Resumo:
The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.
Resumo:
Electrical methods of geophysical survey are known to produce results that are hard to predict at different times of the year, and under differing weather conditions. This is a problem which can lead to misinterpretation of archaeological features under investigation. The dynamic relationship between a ‘natural’ soil matrix and an archaeological feature is a complex one, which greatly affects the success of the feature’s detection when using active electrical methods of geophysical survey. This study has monitored the gradual variation of measured resistivity over a selection of study areas. By targeting difficult to find, and often ‘missing’ electrical anomalies of known archaeological features, this study has increased the understanding of both the detection and interpretation capabilities of such geophysical surveys. A 16 month time-lapse study over 4 archaeological features has taken place to investigate the aforementioned detection problem across different soils and environments. In addition to the commonly used Twin-Probe earth resistance survey, electrical resistivity imaging (ERI) and quadrature electro-magnetic induction (EMI) were also utilised to explore the problem. Statistical analyses have provided a novel interpretation, which has yielded new insights into how the detection of archaeological features is influenced by the relationship between the target feature and the surrounding ‘natural’ soils. The study has highlighted both the complexity and previous misconceptions around the predictability of the electrical methods. The analysis has confirmed that each site provides an individual and nuanced situation, the variation clearly relating to the composition of the soils (particularly pore size) and the local weather history. The wide range of reasons behind survey success at each specific study site has been revealed. The outcomes have shown that a simplistic model of seasonality is not universally applicable to the electrical detection of archaeological features. This has led to the development of a method for quantifying survey success, enabling a deeper understanding of the unique way in which each site is affected by the interaction of local environmental and geological conditions.
Resumo:
Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.
Resumo:
Establishing metrics to assess machine translation (MT) systems automatically is now crucial owing to the widespread use of MT over the web. In this study we show that such evaluation can be done by modeling text as complex networks. Specifically, we extend our previous work by employing additional metrics of complex networks, whose results were used as input for machine learning methods and allowed MT texts of distinct qualities to be distinguished. Also shown is that the node-to-node mapping between source and target texts (English-Portuguese and Spanish-Portuguese pairs) can be improved by adding further hierarchical levels for the metrics out-degree, in-degree, hierarchical common degree, cluster coefficient, inter-ring degree, intra-ring degree and convergence ratio. The results presented here amount to a proof-of-principle that the possible capturing of a wider context with the hierarchical levels may be combined with machine learning methods to yield an approach for assessing the quality of MT systems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The ubiquity and power of personal digital devices make them attractive tools for STEM instructors who would like to stimulate active learning. These devices offer both abundant pedagogical opportunities and worrisome challenges. We will discuss our two years of experience in using mobile devices to teach biology in a community college setting, as well as our observations on the best ways to organize digital-based activities to facilitate student active learning.
Resumo:
A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.
Resumo:
Gibrat's law predicts that firm growth is purely random and should be independent of firm size. We use a random effects-random coefficient model to test whether Gibrat's law holds on average in the studied sample as well as at the individual firm level in the Swedish energy market. No study has yet investigated whether Gibrat's law holds for individual firms, previous studies having instead estimated whether the law holds on average in the samples studied. The present results support the claim that Gibrat's law is more likely to be rejected ex ante when an entire firm population is considered, but more likely to be confirmed ex post after market selection has "cleaned" the original population of firms or when the analysis treats more disaggregated data. From a theoretical perspective, the results are consistent with models based on passive and active learning, indicating a steady state in the firm expansion process and that Gibrat's law is violated in the short term but holds in the long term once firms have reached a steady state. These results indicate that approximately 70 % of firms in the Swedish energy sector are in steady state, with only random fluctuations in size around that level over the 15 studied years.
Resumo:
Frente às transformações advindas do impacto das tecnologias na sociedade e nas organizações, bem como as novas habilidades e competências a serem adquiridas pelos profissionais no disputado mercado de trabalho atual, faz-se relevante atualizar os processos de ensino/aprendizagem, de forma a qualificar a formação profissional do egresso de ensino médio. O presente estudo tem por objetivo analisar a visão dos professores sobre as implicações da introdução dos recursos de informática nas organizações estaduais de ensino médio de Porto Alegre. Sua investigação tem como dimensão predominante uma abordagem quantitativa, de caráter exploratório sobre as percepções dos professores. Uma segunda dimensão - contextual - identifica as principais políticas educacionais para a área de informática no ensino médio. A dimensão do professor tem, por sua vez, duas subdimensões: o papel do professor frente ao processo de ensino-aprendizagem e suas percepções quanto à introdução dos recursos da tecnologia da informática no ensino médio. A base empírica desta dimensão adveio de dez escolas, selecionadas através de amostragem por cotas, tendo como instrumento de coleta de dados um questionário. Na dimensão contextual, foram realizadas pesquisa documental e entrevistas junto aos ór gãos oficiais responsáveis pelas políticas de informática educacional e direções de escolas e professores. Os resultados mostram que os professores do ensino médio das escolas estaduais de Porto Alegre concordam e percebem como prioritária a introdução dos recursos da tecnologia da informática nas escolas e que, para usufruir adequadamente destes recursos, os docentes devem assumir uma nova postura frente aos métodos de ensino-aprendizagem. Esta postura vem permitir e incentivar que o discente seja o sujeito do processo de construção do seu conhecimento. Esta pesquisa também identificou diretrizes para a formação de professores subsidiando, assim, políticas públicas para a área de educação no Estado.
Resumo:
This is work itself insert in the mathematics education field of the youth and adult education to aim to practitioners of the educational action into the mathematics area performing to with this is teaching kind, adopting to as parameter the Mathematics Molding approach. The motive of the research is to draw up a application proposal of the molding mathematics as teaching and learning geometry alternative in the youth and adult education. The research it develops in three class of the third level (series 5th and 6th) of he youth and adults education in the one school municipal from the Natal outskirts. Its have qualitative nature with participating observation approach, once performing to directly in to research environment as a mathematics teacher of those same classes. We are used questionnaires, lesson notes and analyses of the officials documents as an basis of claim instruments. The results indicates that activity used the mathematic moldings were appreciated the savoir-faire of the student in to knowledge construction process, when search develop to significant learning methods, helping to student build has mathematics connections with other knowledge areas and inside mathematics himself, so much that enlarges your understanding and assist has in your participation in the other socials place, over there propitiate to change in student and teacher posture with relation to mathematic classroom dynamics