905 resultados para Acetolactate synthase
Resumo:
ABSTRACT: BACKGROUND: Hepatic sinusoidal resistance is regulated by vasoactive factors including endothelin-1 (ET-1) and nitric oxide (NO). In the absence of NO, vasoconstrictor response to endothelin is expected to predominate. Therefore, we hypothesized sensitivity to endothelin to be increased in mice lacking the endothelial cell NO synthase gene. Response of vascular resistance to endothelin was assessed in the in situ perfused liver of endothelial constitutive nitric oxide synthase (ecNOS) knockout and wild type mice. Livers were also harvested for RNA and protein isolation for quantitative PCR and Western blotting, respectively. The expression of endothelin receptors, isoenzymes of NO synthase, heme-oxygenase and adrenomedullin was quantified. RESULTS: Endothelin increased hepatic vascular resistance in a dose-dependent manner in both strains; however, this increase was significantly less in ecNOS knockout mice at physiologic concentrations. Expression of heme-oxygenases and adrenomedullin was similar in both groups, whereas inducible nitric oxide synthase (iNOS) protein was not detectable in either strain. mRNA levels of pre-pro-endothelin-1 and ETB receptor were comparable in both strains, while mRNA for ETA receptor was decreased in ecNOS knockouts. CONCLUSION: Livers of ecNOS knockout mice have a decreased sensitivity to endothelin at physiologic concentrations; this is associated with a decreased expression of ETA receptors, but not with other factors, such as iNOS, ETB receptors, adrenomedullin or heme-oxygenase. Further studies targeting adaptive changes in ETA receptor distribution and/or intracellular signaling downstream of the receptor are indicated.
Resumo:
Dendritic cells (DC) are important cells at the interface between innate and adaptive immunity. DC have a key role in antigen processing and presentation to T cells. Effector functions of DC related to innate immunity have not been explored extensively. We show that bovine monocyte-derived DC (mDC) express inducible nitric oxide synthase (iNOS) mRNA and protein and produce NO upon triggering with interferon-gamma (IFN-gamma) and heat-killed Listeria monocytogenes (HKLM). An immunocytochemical analysis revealed that a sizeable subset (20-60%) copiously expresses iNOS (iNOShi) upon IFN-gamma/HKLM triggering, whereas the other subset expressed low levels of iNOS (iNOSlo). Monocyte-derived macrophages (mMphi) are more homogeneous with regard to iNOS expression. The number of cells within the iNOSlo mDC subset is considerably larger than the number of dead cells or cells unresponsive to IFN-gamma/HKLM. The large majority of cells translocated p65 to the nucleus upon triggering by IFN-gamma/HKLM. A contamination of mDC with iNOS-expressing mMphi was excluded as follows. (i) Cell surface marker analysis suggested that mDC were relatively homogeneous, and no evidence for a contaminating subset expressing macrophage markers (e.g. high levels of CD14) was obtained. (ii) iNOS expression was stronger in iNOShi mDC than in mMphi. The use of maturation-promoting stimuli revealed only subtle phenotypic differences between immature and mature DC in cattle. Nevertheless, these stimuli promoted development of considerably fewer iNOShi mDC upon triggering with IFN-gamma/HKLM. Immunocytochemical results showed that although a significant proportion of cells expressed iNOS only or TNF only upon triggering with IFN-gamma/HKLM, a significant number of cells expressed both iNOS and TNF, suggesting that TNF and iNOS producing (TIP) DC are present within bovine mDC populations obtained in vitro.
Resumo:
Nitric oxide (NO) mediates a variety of physiological functions in the central nervous system and acts as an important developmental regulator. Striatal interneurons expressing neuronal nitric oxide synthase (nNOS) have been described to be relatively spared from the progressive cell loss in Huntington's disease (HD). We have recently shown that creatine, which supports the phosphagen energy system, induces the differentiation of GABAergic cells in cultured striatal tissue. Moreover, neurotrophin-4/5 (NT-4/5) has been found to promote the survival and differentiation of cultured striatal neurons. In the present study, we assessed the effects of creatine and NT-4/5 on nNOS-immunoreactive (-ir) neurons of E14 rat ganglionic eminences grown for 1 week in culture. Chronic administration of creatine [5mM], NT-4/5 [10ng/ml], or a combination of both factors significantly increased numbers of nNOS-ir neurons. NT-4/5 exposure also robustly increased levels of nNOS protein. Interestingly, only NT-4/5 and combined treatment significantly increased general viability but no effects were seen for creatine supplementation alone. In addition, NT-4/5 and combined treatment resulted in a significant larger soma size and number of primary neurites of nNOS-ir neurons while creatine administration alone exerted no effects. Double-immunolabeling studies revealed that all nNOS-ir cells co-localized with GABA. In summary, our findings suggest that creatine and NT-4/5 affect differentiation and/or survival of striatal nNOS-ir GABAergic interneurons. These findings provide novel insights into the biology of developing striatal neurons and highlight the potential of both creatine and NT-4/5 as therapeutics for HD.
Resumo:
Traditional NSAIDs, selective cyclooxygenase (COX)-2 inhibitors, and inhibitors of nitric oxide synthase (NOS) impair the healing of preexisting gastric ulcers. However, the role of COX-1 (with or without impairment of COX-2) and the interaction between COX and NOS isoforms during healing are less clear. Thus we investigated healing and regulation of COX and NOS isoforms during ulcer healing in COX-1 and COX-2 deficiency and inhibition mouse models. In this study, female wild-type COX-1(-/-) and COX-2(-/-) mice with gastric ulcers induced by cryoprobe were treated intragastrically with vehicle, selective COX-1 (SC-560), COX-2 (celecoxib, rofecoxib, and valdedoxib), and unselective COX (piroxicam) inhibitors. Ulcer healing parameters, mRNA expression, and activity of COX and NOS were quantified. Gene disruption or inhibition of COX-1 did not impair ulcer healing. In contrast, COX-2 gene disruption and COX-2 inhibitors moderately impaired wound healing. More severe healing impairment was found in dual (SC-560 + rofecoxib) and unselective (piroxicam) COX inhibition and combined COX impairment (in COX-1(-/-) mice with COX-2 inhibition and COX-2(-/-) mice with COX-1 inhibition). In the ulcerated repair tissue, COX-2 mRNA in COX-1(-/-) mice, COX-1 mRNA in COX-2(-/-) mice, and, remarkably, NOS-2 and NOS-3 mRNA in COX-impaired mice were more upregulated than in wild-type mice. This study demonstrates that COX-2 is a key mediator in gastric wound healing. In contrast, COX-1 has no significant role in healing when COX-2 is unimpaired but becomes important when COX-2 is impaired. As counterregulatory mechanisms, mRNA of COX and NOS isoforms were increased during healing in COX-impaired mice.
Resumo:
Mitochondrial F(1)F(o)-ATP synthase is a molecular motor that couples the energy generated by oxidative metabolism to the synthesis of ATP. Direct visualization of the rotary action of the bacterial ATP synthase has been well characterized. However, direct observation of rotation of the mitochondrial enzyme has not been reported yet. Here, we describe two methods to reconstitute mitochondrial F(1)F(o)-ATP synthase into lipid bilayers suitable for structure analysis by electron and atomic force microscopy (AFM). Proteoliposomes densely packed with bovine heart mitochondria F(1)F(o)-ATP synthase were obtained upon detergent removal from ternary mixtures (lipid, detergent and protein). Two-dimensional crystals of recombinant hexahistidine-tagged yeast F(1)F(o)-ATP synthase were grown using the supported monolayer technique. Because the hexahistidine-tag is located at the F(1) catalytic subcomplex, ATP synthases were oriented unidirectionally in such two-dimensional crystals, exposing F(1) to the lipid monolayer and the F(o) membrane region to the bulk solution. This configuration opens a new avenue for the determination of the c-ring stoichiometry of unknown hexahistidine-tagged ATP synthases and the organization of the membrane intrinsic subunits within F(o) by electron microscopy and AFM.
Resumo:
Neonatal cattle and in part neonates of other species have manyfold higher plasma concentrations of nitrite plus nitrate than mature cows and subjects of other species, suggesting an enhanced and needed activation of the nitric oxide (NO) axis at birth. While the biological half-life of NO is short (<1 sec), its functionality can be prolonged, and in many regards more discretely modulated, when it reacts with low-molecular-weight and protein-bound thiols to form S-nitrosothiols (RSNO), from which NO subsequently can be rereleased. We used the calf as a model to test the hypothesis that plasma concentrations of RSNO are elevated at birth in mammals, correlate with ascorbate and urate levels, are selectively generated in critical tissue beds, and are generated in a manner temporally coincident with changes in tissue levels of active NO synthases (NOS). Plasma concentrations of RSNO, ascorbate, and urate were highest immediately after birth (Day 0), dropped >50% on Day 1, and gradually decreased over time, reaching a nadir in mature cattle. Albumin and immunoglobulin G were identified as major plasma RSNO. The presence of S-nitrosocysteine (SNC, a validated marker for S-nitrosylated proteins), inducible NOS (iNOS), and activated endothelial NOS (eNOS phosphorylated at Ser1177) in different tissues was analyzed by immunohistochemistry in another group of similar-aged calves. SNC, iNOS, and phosphorylated eNOS were detected in liver and ileum at the earliest timepoint of sampling (4 hrs after birth), increased between 4 and 24 hrs, and then declined to near-nondetectable levels by 2 weeks of life. Our data show that the neonatal period in the bovine species is characterized by highly elevated and coordinated NO-generating and nitrosylation events, with the ontogenetic changes occurring in iNOS and eNOS contents in key tissues as well as RSNO products and associated antioxidant markers.
Resumo:
BACKGROUND: nitric oxide (NO) plays an important role in the regulation of cardiovascular and glucose homeostasis. Mice lacking the gene encoding the neuronal isoform of nitric oxide synthase (nNOS) are insulin-resistant, but the underlying mechanism is unknown. nNOS is expressed in skeletal muscle tissue where it may regulate glucose uptake. Alternatively, nNOS driven NO synthesis may facilitate skeletal muscle perfusion and substrate delivery. Finally, nNOS dependent NO in the central nervous system may facilitate glucose disposal by decreasing sympathetic nerve activity. METHODS: in nNOS null and control mice, we studied whole body glucose uptake and skeletal muscle blood flow during hyperinsulinaemic clamp studies in vivo and glucose uptake in skeletal muscle preparations in vitro. We also examined the effects of alpha-adrenergic blockade (phentolamine) on glucose uptake during the clamp studies. RESULTS: as expected, the glucose infusion rate during clamping was roughly 15 percent lower in nNOS null than in control mice (89 (17) vs 101 (12) [-22 to -2]). Insulin stimulation of muscle blood flow in vivo, and intrinsic muscle glucose uptake in vitro, were comparable in the two groups. Phentolamine, which had no effect in the wild-type mice, normalised the insulin sensitivity in the mice lacking the nNOS gene. CONCLUSIONS: insulin resistance in nNOS null mice was not related to defective insulin stimulation of skeletal muscle perfusion and substrate delivery or insulin signaling in the skeletal muscle cell, but to a sympathetic alpha-adrenergic mechanism.
Resumo:
Homozygous mutations in the Reelin gene result in severe disruption of brain development. The histogenesis of layered regions, like the neocortex, hippocampus and the cerebellum, is most notably affected in mouse reeler mutants and similar traits are also present in mice lacking molecular components of the Reelin signalling pathway. Moreover, there is evidence for an additional role of Reelin in sustaining synaptic plasticity in adult networks. Nitric oxide is an important gaseous messenger that can modulate neuronal plasticity both in developing and mature synaptic networks and has been shown to facilitate synaptic changes in the hippocampus, cerebellum and olfactory bulb. We studied the distribution and content of neuronal nitric oxide synthase in the olfactory bulbs of reeler and wildtype mice. Immunocytochemistry reveals that Reelin and neuronal nitric oxide synthase containing interneurons are two distinct, non overlapping cell populations of the olfactory bulb. We show by in situ hybridization that both nitrergic and Reelin expressing cells represent only a subset of olfactory bulb GABAergic neurons. Immunoblots show that neuronal nitric oxide synthase protein content is decreased by two thirds in reeler mice causing a detectable loss of immunolabelled cells throughout the olfactory bulb of this strain. However, neuronal nitric oxide synthase mRNA levels, essayed by quantitative real-time RT-PCR, are unaffected in the reeler olfactory bulb. Thus, disruption of the Reelin signalling pathway may modify the turnover of neuronal nitric oxide synthase in the olfactory bulb and possibly affects nitric oxide functions in reeler mice.
Resumo:
Listeria monocytogenes (LM) is a Gram-positive facultative intracellular bacterium that causes fatal meningoencephalitis in humans and ruminants. A current paradigm predicts that intracellular bacteria are controlled by nitric oxide (NO) whose synthesis is catalyzed by inducible nitric oxide synthase (iNOS). The ability of macrophages (Mphi) to express iNOS shows extreme interspecies variability. Here the expression of iNOS and synthesis of NO was studied in listeric encephalitis of cattle, sheep, and goats. iNOS was expressed by a subset of Mphi in cerebral microabscesses in all three species. The level of iNOS expression and the density of cells per lesion expressing iNOS was highest in cattle, intermediate in sheep, and lowest in goats. The accumulation of nitrotyrosine (NT), an indicator of local NO synthesis, was observed in lesions of cattle but not in those of small ruminants. The density of iNOS-expressing cells in lesions was inversely correlated with the number of bacteria. No species differences were observed in regard to reactive oxygen intermediate (ROI) production by stimulated granulocytes, using the flow cytometric dihydrorhodamine-123 (DHR) method indicating ROI generation. Thus, the marked species differences in iNOS expression, NT accumulation, and LM content in lesions of ruminants with listeric encephalitis are explained by different amounts of ROI produced. It suggests that variations in the ability of Mphi to synthesize NO are of pathophysiological significance in listeriosis.
Resumo:
OBJECTIVE: Nitric oxide (NO) inhibits thrombus formation, vascular contraction, and smooth muscle cell proliferation. We investigated whether NO release is enhanced after endothelial NO synthase (eNOS) gene transfer in atherosclerotic human carotid artery ex vivo. METHODS AND RESULTS: Western blotting and immunohistochemistry revealed that transduction enhanced eNOS expression; however, neither nitrite production nor NO release measured by porphyrinic microsensor was altered. In contrast, transduction enhanced NO production in non-atherosclerotic rat aorta and human internal mammary artery. In transduced carotid artery, calcium-dependent eNOS activity was minimal and did not differ from control conditions. Vascular tetrahydrobiopterin concentrations did not differ between the experimental groups.Treatment of transduced carotid artery with FAD, FMN, NADPH, L-arginine, and either sepiapterin or tetrahydrobiopterin did not alter NO release. Superoxide formation was similar in transduced carotid artery and control. Treatment of transduced carotid artery with superoxide dismutase (SOD), PEG-SOD, PEG-catalase did not affect NO release. CONCLUSIONS: eNOS transduction in atherosclerotic human carotid artery results in high expression without any measurable activity of the recombinant protein. The defect in the atherosclerotic vessels is neither caused by cofactor deficiency nor enhanced NO breakdown. Since angioplasty is performed in atherosclerotic arteries,eNOS gene therapy is unlikely to provide clinical benefit.
Resumo:
Nitric oxide mediates a wide array of cellular functions in many tissues. It is generated by three known isoforms of nitric oxide synthases (NOS). Recently, the endothelial isoform, NOSIII, was shown to be abundantly expressed in the rat thyroid gland and its expression increased in goitrous glands. In this study, we analyzed whether NOSIII is expressed in human thyroid tissue and whether levels of expression vary in different states of thyroid gland function. Semiquantitative RT-PCR was used to assess variations in NOSIII gene expression in seven patients with Graves' disease, one with a TSH-receptor germline mutation and six hypothyroid patients (Hashimoto's thyroiditis). Protein expression and subcellular localization were determined by immunohistochemistry (two normal thyroids, five multinodular goiters, ten hyperthyroid patients and two hypothyroid patients). NOSIII mRNA was detected in all samples: the levels were significantly higher in tissues from hyperthyroid patients compared with euthyroid and hypothyroid patients. NOSIII immunoreactivity was detected in vascular endothelial cells, but was also found in thyroid follicular cells. In patients with Graves' disease, the immunostaining was diffusely enhanced in all follicular cells. A more intense signal was observed in toxic adenomas and in samples obtained from a patient with severe hyperthyroidism due to an activating mutation in the TSH receptor. In multinodular goiters, large follicles displayed a weak signal whereas small proliferative follicles showed intense immunoreactivity near the apical plasma membrane. In hypothyroid patients, NOSIII immunoreactivity was barely detectable. In summary, NOSIII is expressed both in endothelial cells and thyroid follicular cells. The endothelial localization of NOSIII is consistent with a role for nitric oxide in the vascular control of the thyroid. NOSIII expression in thyroid follicular cells and the variations in its immunoreactivity suggest a possible role for nitric oxide in thyrocyte function and/or growth.
Resumo:
Aminolevulinic acid synthase 1 (ALAS1) is the rate-limiting enzyme of heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target of the bile acid-activated nuclear receptor farnesoid X receptor (FXR). Experiments in primary human hepatocytes and in human liver slices showed that ALAS1 messenger RNA (mRNA) and activity is increased upon exposure to chenodeoxycholic acid (CDCA), the most potent natural FXR ligand, or the synthetic FXR-specific agonist GW4064. Moreover, overexpression of a constitutively active form of FXR further increased ALAS1 mRNA expression. In agreement with these observations, an FXR response element was identified in the 5' flanking region of human ALAS1 and characterized in reporter gene assays. A highly conserved FXR binding site (IR1) within a 175-bp fragment at -13 kilobases upstream of the transcriptional start site was able to trigger an FXR-specific increase in luciferase activity upon CDCA treatment. Site-directed mutagenesis of IR1 abolished this effect. Binding of FXR/retinoid acid X receptor heterodimers was demonstrated by mobility gel shift experiments. Conclusion: These data strongly support a role of bile acid-activated FXR in the regulation of human ALAS1 and, consequently, hepatic porphyrin and heme synthesis. These data also suggest that elevated endogenous bile acids may precipitate neuropsychiatric attacks in patients with acute hepatic porphyrias.
Resumo:
Cupiennin 1a (GFGALFKFLAKKVAKTVAKQAAKQGAKYVVNKQME-NH2) is a potent venom component of the spider Cupiennius salei. Cupiennin 1a shows multifaceted activity. In addition to known antimicrobial and cytolytic properties, cupiennin 1a inhibits the formation of nitric oxide by neuronal nitric oxide synthase at an IC50 concentration of 1.3 +/- 0.3 microM. This is the first report of neuronal nitric oxide synthase inhibition by a component of a spider venom. The mechanism by which cupiennin 1a inhibits neuronal nitric oxide synthase involves complexation with the regulatory protein calcium calmodulin. This is demonstrated by chemical shift changes that occur in the heteronuclear single quantum coherence spectrum of 15N-labelled calcium calmodulin upon addition of cupiennin 1a. The NMR data indicate strong binding within a complex of 1 : 1 stoichiometry.
Resumo:
Alterations in nitric oxide synthase (NOS) are implicated in ischemia and ischemia-reperfusion injury. Changes in the 3 NOS isoforms in human skeletal muscle subjected to acute ischemia and reperfusion were studied. Muscle biopsies were taken from patients undergoing total knee replacement. Distribution of the specific NOS isoforms within muscle sections was studied using immunohistochemistry. NOS mRNA levels were measured using real-time reverse transcription-polymerase chain reaction and protein levels studied using Western blotting. NOS activity was also assessed using the citrulline assay. All 3 NOS isoforms were found in muscle sections associated with muscle fibers and microvessels. In muscle subjected to acute ischemia and reperfusion, NOS I/neuronal NOS mRNA and protein were elevated during reperfusion. NOS III/endothelial NOS was also upregulated at the protein level during reperfusion. No changes in NOS II/inducible NOS expression or NOS activity occurred. In conclusion, alterations in NOS I and III (neuronal NOS and endothelial NOS) at different levels occurred after acute ischemia and reperfusion in human skeletal muscle; however, this did not result in increased NOS activity. In the development of therapeutic agents based on manipulation of the NO pathway, targeting the appropriate NOS isoenzymes may be important.
Resumo:
BACKGROUND: Dysfunction of the nitric oxide pathway is implicated in peripheral arterial disease. Nitric oxide synthase (NOS) isoforms and NOS activity were studied in muscle from patients with critical leg ischaemia (CLI). Alterations in NOS during revascularization surgery were also assessed. METHODS: Muscle biopsies were taken from patients with CLI undergoing amputation and also from patients undergoing femorodistal bypass at the start of surgery, after arterial clamping and following reperfusion. The presence of NOS within muscle sections was confirmed using reduced nicotinamide adenine dinucleotide phosphate diaphorase histochemistry. NOS isoform distribution was studied by immunohistochemistry. NOS mRNA and protein levels were measured using real-time reverse transcriptase-polymerase chain reaction and western blotting. NOS activity was assessed with the citrulline assay. RESULTS: All three NOS isoforms were found in muscle, associated with muscle fibres and microvessels. NOS I and III protein expression was increased in CLI (P = 0.041). During revascularization, further ischaemia and reperfusion led to a rise in NOS III protein levels (P = 0.008). NOS activity was unchanged. CONCLUSION: Alterations in NOS I and III occurred in muscle from patients with CLI and further changes occurred during bypass surgery.