999 resultados para Accumulation rate, dust
Resumo:
During Ocean Drilling Program (ODP) Leg 159, four sites (Sites 959-962) were drilled along a depth transect on the Côte d'Ivoire/Ghana Transform Margin. In this study, the Pliocene-Pleistocene history of carbonate and organic carbon accumulation at Hole 959C is reconstructed for the eastern equatorial Atlantic off the Ivory Coast/Ghana based on bulk carbonate, sand fraction, organic carbon, and other organic geochemical records (d13Corg, marine organic matter percentages derived from organic petrology, hydrogen index, C/N). Pliocene-Pleistocene sedimentation off the Ivory Coast/Ghana was strongly affected by low mean sedimentation rates, which are attributed to persistently enhanced bottom-water velocities related to the steep topography of the transform margin. Sand fraction and bulk carbonate records reveal typical glacial/interglacial cycles, preserved, however, with low time resolution. Intermediate carbonate accumulation rates observed throughout the Pliocene-Pleistocene suggest intense winnowing and sediment redistribution superimposed by terrigenous dilution. 'Atlantic-type' sand and carbonate cycles, consistent with records from pelagic areas of the eastern equatorial Atlantic, are encountered at Hole 959C prior to about 0.9 Ma. Total organic carbon (TOC) records are frequently inversely correlated to carbonate contents, indicating mainly productivity-driven carbonate dissolution related to changes in paleoproductivity. During Stages 22-24, 20, 16, 12, 8, and 4, sand and carbonate records reveal a 'Pacific-type' pattern, showing elevated contents during glacials commonly in conjunction with enhanced TOC records. Formation of 'Pacific-type' patterns off the Ivory Coast/Ghana is attributed to drastically increased bottom-water intensities along the transform margin in accordance with results reported from the Walvis Ridge area. Short-term glacial/interglacial changes in paleoproductivity off the Ivory Coast/Ghana are to some extend recognizable during glacials prior to 1.7 Ma and interglacial Stages 21, 19, 13, 9, and 1. Enhanced coastal upwelling during interglacials is attributed to local paleoclimatic and oceanographic conditions off the Ivory Coast/Ghana. Quantitative estimates of marine organic carbon based on organic petrologic and d13Corg records reveal an offset in concentration ranging from 15% to 60%. Highest variabilities of both records are recorded since ~0.9 Ma. Discrepancies between the isotopic and microscopic records are attributed to an admixture of C4 plant debris approaching the eastern equatorial Atlantic via atmospheric dust. Terrestrial organic material likely originated from the grass-savannah-covered Sahel zone in central Africa. Estimated C4 plant concentrations and accumulation rates range from 10% to 37% and from almost zero to 0.006 g/cm**2/k.y., respectively. The strongest eolian supply to the northern Gulf of Guinea is indicated between 1.9 and 1.68 Ma and during glacial isotopic Stages 22-24, 20, 14, and 12. The presence of grass-type plant debris is further supported by organic petrologic studies, which reveal well-preserved cell tissues of vascular plants or tube-shaped, elongated terrestrial macerals showing different levels of oxidation.
Resumo:
We examined the flux of Al to sediment accumulating beneath the zone of elevated productivity in the central equatorial Pacific Ocean, along a surface sediment transect at 135°W as well as downcore for a 650 kyr record at 1.3°N, 133.6°W. Across the surface transect, a pronounced, broadly equatorially symmetric increase in Al accumulation is observed, relative to Ti, with Al/Ti ratios reaching values 3-4 times that of potential detrital sources. The profile parallels biogenic accumulation and the modeled flux of particulate 234Th, suggesting rapid and preferential adsorptive removal of Al from seawater by settling biogenic particles. Normative calculations confirm that most Al is unsupported by the terrigenous fraction. The observed distributions are consistent with previous observations of the relative and absolute behavior of Al and Ti in seawater, and we can construct a reasonable mass balance between the amount of seawater-sourced Al retained in the sediment and the amount of seawater Al available in the overlying column. The close tie between Al/Ti and biogenic accumulation (as opposed to concentration) emphasizes that biogenic sedimentary Al/Ti responds to removal-transport phenomena and not bulk sediment composition. Thus, in these sediments dominated by the biogenic component, the bulk Al/Ti ratio reflects biogenic particle flux, and by extension, productivity of the overlying seawater. The downcore profile of Al/Ti at 1.3°N displays marked increases during glacial episodes, similar to that observed across the surface transect, from a background value near Al/Ti of average upper crust. The excursions in Al/Ti are stratigraphically coincident with maxima in both bulk and CaCO3 accumulation and the excess Al appears to not be preferentially affiliated with opaline or organic phases. Consistent with the similar behavioral removal of Al and 234Th, the latter of which responds to the total particle flux, the Al flux reflects carbonate accumulation only because carbonate comprises the dominant flux in these particular deposits. These results collectively indicate that (1) Al in biogenic sediment and settling biogenic particles is strongly affected by a component adsorbed from seawater. Therefore, the common tenet that Al is dominantly associated with terrestrial particulate matter, and the subsequent use of Al distributions to calculate the abundance and flux of terrestrial material in settling particles and sediment, needs to be reevaluated. (2) The Al/Ti ratio in biogenic sediment can be used to trace the productivity of the overlying water, providing a powerful new paleochemical tool to investigate oceanic response to climatic variation. (3) The close correlation between the Al/Ti productivity signal and carbonate maxima downcore at 1.3°N suggests that the sedimentary carbonate maxima in the central equatorial Pacific Ocean record increased productivity during glacial episodes.
Resumo:
We here present a synchronization of the NGRIP, GRIP, and GISP2 ice cores based mainly on volcanic events over the period 14.9-32.45 ka b2k (before AD 2000), corresponding to Marine Isotope Stage 2 (MIS 2) and the end of MIS 3. The matching provides a basis for applying the recent NGRIP-based Greenland Ice Core Chronology 2005 (GICC05) time scale to the GRIP and GISP2 ice cores, thereby making it possible to compare the synchronized palaeoclimate profiles of the cores in detail and to identify relative accumulation differences between the cores. Based on the matching, a period of anomalous high accumulation rates in the GISP2 ice core is detected within the period 16.5-18.3 ka b2k. The d18O and [Ca2+] profiles of the three cores are presented on the common GICC05 time scale and generally show excellent agreement across the stadial-interstadial transitions and across the two characteristic dust events in Greenland Stadial 3. However, large differences between the d18O and [Ca2+] profiles of the three cores are seen in the same period as the 7-9% increase in the GISP2 accumulation rate. We conclude that changes of the atmospheric circulation are likely to have occurred in this period, altering the spatial gradients in Greenland and resulting in larger variations between the records.
Resumo:
Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.
Resumo:
We here present a synchronization of the NGRIP, GRIP, and GISP2 ice cores based mainly on volcanic events over the period 14.9-32.45 ka b2k (before AD 2000), corresponding to Marine Isotope Stage 2 (MIS 2) and the end of MIS 3. The matching provides a basis for applying the recent NGRIP-based Greenland Ice Core Chronology 2005 (GICC05) time scale to the GRIP and GISP2 ice cores, thereby making it possible to compare the synchronized palaeoclimate profiles of the cores in detail and to identify relative accumulation differences between the cores. Based on the matching, a period of anomalous high accumulation rates in the GISP2 ice core is detected within the period 16.5-18.3 ka b2k. The d18O and [Ca2+] profiles of the three cores are presented on the common GICC05 time scale and generally show excellent agreement across the stadial-interstadial transitions and across the two characteristic dust events in Greenland Stadial 3. However, large differences between the d18O and [Ca2+] profiles of the three cores are seen in the same period as the 7-9% increase in the GISP2 accumulation rate. We conclude that changes of the atmospheric circulation are likely to have occurred in this period, altering the spatial gradients in Greenland and resulting in larger variations between the records.