998 resultados para Acc rate ice


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variations in carbonate flux and dissolution, which occurred in the equatorial Atlantic during the last 24,000 years, have been estimated by a new approach that allows the point-by-point determination of paleofluxes to the seafloor. An unprecedented time resolution can thus be obtained which allows sequencing of the relatively rapid events occurring during deglaciation. The method is based on observations that the flux of unsupported 230Th into deep-sea sediments is nearly independent of the total mass flux and is close to the production rate. Thus excess 230Th activity in sediments can be used as a reference against which fluxes of other sedimentary components can be estimated. The study was conducted at two sites (Ceará Rise; western equatorial Atlantic, and Sierra Leone Rise; eastern equatorial Atlantic) in cores raised from three different depths at each site. From measurements of 230Th and CaCO3, changes in carbonate flux with time and depth were obtained. A rapid increase in carbonate production, starting at the onset of deglaciation, was found in both areas. This event may have important implications for the postglacial increase in atmospheric CO2 by increasing the global carbonate carbon to organic carbon rain ratio and decreasing the alkalinity of surface waters (and possibly the North Atlantic Deep Water). Increased carbonate dissolution occurred in the two regions during deglaciation, followed by a minimum during mid-Holocene and renewed intensification of dissolution in late Holocene. During the last 16,000 years, carbonate dissolution was consistently more pronounced in the western than in the eastern basin, reflecting the influence of Antarctic Bottom Water in the west. This trend was reversed during stage 2, possibly due to the accumulation of metabolic CO2 below the level of the Romanche Fracture Zone in the eastern basin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Benthic foraminiferal assemblage compositions and sedimentary geochemical parameters were analyzed in two radiocarbon dated sediment cores from the upwelling area off NW Africa at 12°N, to reconstruct productivity changes during the last 31 kyr. High-latitude cold events and variations in low-latitude summer insolation influenced humidity, wind systems, and the position of the tropical rain belt over this time period. This in turn caused changes in intensity and seasonality of primary productivity off the southern Northwest African continental margin. High accumulation rates of benthic foraminifera, carbonate, and organic carbon during times of north Atlantic melt water events Heinrich 2 (25.4 to 24.3 kyr BP) and 1 (16.8 to 15.8 kyr BP) indicate high productivity. Dominance of infaunal benthic foraminiferal species and high numbers of deep infaunal specimens during that time indicate a strong and sustained supply of refractory organic matter reworked from the upper slope and shelf. A more southerly position of the tropical rainbelt and the Northeast trade wind belt during Heinrich 2 and 1 may have enhanced wind intensity and almost permanent upwelling, driving this scenario. A phytodetritus-related benthic fauna indicates seasonally pulsed input of labile organic matter but generally low year-round productivity during the Last Glacial Maximum (23 to 18 kyr BP). The tropical rainbelt is more expanded to the North than during Heinrich Events, and relatively weak NE trade winds resulted in seasonal and weak upwelling, thus lower productivity. High productivity characterized by a seasonally high input of labile organic matter, is indicated for times of orbital forced warming, such as the African Humid Period (9.8 to 7 kyr BP). An intensified African monsoon during boreal summer and the northernmost position of the tropical rainbelt within the last 31 kyr resulted in enhanced river discharge from the northward-extended drainage area (or river basin) initiating intense phytoplankton blooms. In the late Holocene (4 to 0 kyr BP) strong carbonate dissolution may have been caused by even more enhanced organic matter fluxes to the sea floor. Increasing aridity on the continent and stronger NE trade winds induced intensive, seasonal coastal upwelling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on a high-resolution analysis of the diatom signal and biogenic bulk components at site GeoB3606-1 (25°S, off Namibia), we describe rapid palaeoceanographic changes in the Benguela Upwelling System (BUS) from early MIS 3 through to the early Holocene (55 000 to 7 000 14C yr BP). Coastal upwelling strongly varied at 25°S from MIS 3 through to MIS 2. The abrupt decrease in the accumulation rate of biogenic silica and diatoms from MIS 3 into MIS 2 records rapid oceanographic changes in the BUS off Namibia. During MIS 3, leakage of excess H4SiO4 acid from the Southern Ocean into low-latitude surface waters, as indicated by the occurrence of Antarctic diatoms, enhanced the production of spores of Chaetoceros at the expense of calcareous phytoplankton. Furthermore, shallower Antarctic Intermediate Water (AAIW) would have enriched the thermocline off Namibia with silicate transported from the Southern Ocean. The strong decrease of the siliceous signal throughout MIS 2 represents a decrease in the nutrient input to the BUS, even though the diatom assemblage is still dominated by spores of the upwelling-associated diatom genus Chaetoceros. Depletion of silicate in the thermocline from the onset of MIS 2 through to the early Holocene reflects the shutdown of AAIW injection from the Southern Ocean into the BUS, causing upwelled waters to become reduced in silicate, hence less favourable for diatom production. The deglaciation and early Holocene are characterised by the replacement of the upwelling-associated flora by a non-upwelling-related diatom community, reflecting weakened upwelling, retraction of the seaward extension of the chlorophyll filament off Lüderitz, and dominance of warmer waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Middle/late Miocene to early Pliocene sedimentary sequences along the continental margin of southwest Africa have changes that correspond to the carbonate crash (12-9 Ma) and biogenic bloom events (~7-4 Ma) described in the equatorial Pacific by Farrell et al. (1995, doi:10.2973/odp.proc.sr.138.143.1995). To explore the origins of these changes, we analyzed the carbon and coarse fraction contents of sediments from ODP Sites 1085, 1086, and 1087 at a time resolution of 5 to 30 kyr. Several major drops in CaCO3 concentration between 12 and 9 Ma are caused by dilution from major increases in clastic input from the Oranje River during global sea level regressions. Abundant pyrite crystals and good preservation of fish debris reflect low oxygenation of bottom/pore waters. Regional productivity was enhanced during the time equivalent to the carbonate crash period. Higher benthic/planktic foraminiferal ratios indicate that CaCO3 dissolution at Site 1085 peaked between 9 to 7 Ma, which was after the global carbonate crash. This period of enhanced dissolution suggests that Site 1085 was located within a low-oxygen water mass that dissolved CaCO3 more easily than North Atlantic Deep Water, which began to bathe this site at 7 Ma. At 7 to 6 Ma, the onset of the biogenic bloom, increases and variations in total organic carbon and benthic foraminiferal accumulation rates show that paleoproductivity increased significantly above values observed during the carbonate crash period and fluctuated widely. We attribute the late Miocene paleoproductivity increase off southwest Africa to ocean-wide increases in nutrient supply and delivery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Petrographical and geochemical studies of Neogene marine sediments from the Oman Sea (Leg 117, Sites 720, 724, 726 and 730), show a close relationship between the nature and amount of the organic matter, and the degree of degradation of organic matter by sulfate reduction, i.e. pyritization. Petrographically, three major pyritization types were observed: (1) Finely dispersed pyrite framboids in sediments from Oman Margin and Indus Fan, enriched in autochthonous marine organic matter. (2) Infilling of pores by massive pyrite crystals in Oman Margin sediments with a low TOC and a high microfossil content. (3) Pyrite mineralization of lignaceous fragments in organic-depleted sediments from the Indus Fan leading to more massive pyrite. Geochemically, we can define a sulfate reduction index (SRI) as the percentage of initial organic carbon versus that of residual organic carbon. Finely laminated Pliocene-Pleistocene sediments from the Oman Margin exclusively contain organic matter deriving from organic phytoplankton, for which the quantity (TOC) positively correlates with the geochemical quality (Hydrogen Index). We think that the occurrence of this residual organic matter is linked mainly to a high primary paleo-productivity. The intensity of sulfate reduction is constant for sediments with TOC up to 2% and becomes more important when organic input decreases. This degradation process can destroy up to 50% of the initial organic matter, but is not sufficient to explain some of the encountered very low TOC values. It can be seen that sharp increases of certain plankton species (with mineral skeletons) are responsible for a pronounced degradation of organic matter, due to increased sulfate reduction. In that case, the organic matter may be strongly degraded (high SRI), although deposited in an oxygen-depleted environment. Conversely, Miocene-Pliocene sediments contain an autochthonous organic matter that is typical of both low productivity and oxic processes; their very low sulfate reduction index indicates that very little metabolizable organic matter was initially present.