313 resultados para Aberration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Breast cancer is characterized by a series of genetic mutations and is therefore ideally placed for gene therapy intervention. The aim of gene therapy is to deliver a nucleic acid-based drug to either correct or destroy the cells harboring the genetic aberration. More recently, cancer gene therapy has evolved to also encompass delivery of RNA interference technologies, as well as cancer DNA vaccines. However, the bottleneck in creating such nucleic acid pharmaceuticals lies in the delivery. Deliverability of DNA is limited as it is prone to circulating nucleases; therefore, numerous strategies have been employed to aid with biological transport. This review will discuss some of the viral and nonviral approaches to breast cancer gene therapy, and present the findings of clinical trials of these therapies in breast cancer patients. Also detailed are some of the most recent developments in nonviral approaches to targeting in breast cancer gene therapy, including transcriptional control, and the development of recombinant, multifunctional bio-inspired systems. Lastly, DNA vaccines for breast cancer are documented, with comment on requirements for successful pharmaceutical product development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the design, construction and commissioning of LOTUS; a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all transmitting optics. It exploits the instrument focal plane field curvature to partially correct axial chromatic aberration. A stepped slit provides narrow (2.5x95 arcsec) and wide (5x25 arcsec) options that are optimized for spectral resolution and flux calibration respectively. On sky testing shows a wavelength range of 3200-6300 Angstroms with a peak system throughput (including detector quantum efficiency) of 15 per cent and wavelength dependant spectral resolution of R=225-430. By repeated observations of the symbiotic emission line star AG Peg we demonstrate the wavelength stability of the system is less than 2 Angstroms rms and is limited by the positioning of the object in the slit. The spectrograph is now in routine operation monitoring the activity of comet 67P/Churyumov-Gerasimenko during its current post-perihelion apparition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fabricating stable functional devices at the atomic scale is an ultimate goal of nanotechnology. In biological processes, such high-precision operations are accomplished by enzymes. A counterpart molecular catalyst that binds to a solid-state substrate would be highly desirable. Here, we report the direct observation of single Si adatoms catalyzing the dissociation of carbon atoms from graphene in an aberration-corrected high-resolution transmission electron microscope (HRTEM). The single Si atom provides a catalytic wedge for energetic electrons to chisel off the graphene lattice, atom by atom, while the Si atom itself is not consumed. The products of the chiseling process are atomic-scale features including graphene pores and clean edges. Our experimental observations and first-principles calculations demonstrated the dynamics, stability, and selectivity of such a single-atom chisel, which opens up the possibility of fabricating certain stable molecular devices by precise modification of materials at the atomic scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle avec la direction de Jean-Jacques Courtine à l'Université de Paris III Sorbonne Nouvelle sous la discipline anthropologie et avec la direction de Dominique Deslandres à l'Université de Montréal sous la discipline histoire

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to grow ultrathin films layer-by-layer with well-defined epitaxial relationships has allowed research groups worldwide to grow a range of artificial films and superlattices, first for semiconductors, and now with oxides. In the oxides thin film research community, there have been concerted efforts recently to develop a number of epitaxial oxide systems grown on single crystal oxide substrates that display a wide variety of novel interfacial functionality, such as enhanced ferromagnetic ordering, increased charge carrier density, increased optical absorption, etc, at interfaces. The magnitude of these novel properties is dependent upon the structure of thin films, especially interface sharpness, intermixing, defects, and strain, layering sequence in the case of superlattices and the density of interfaces relative to the film thicknesses. To understand the relationship between the interfacial thin film oxide atomic structure and its properties, atomic scale characterization is required. Transmission electron microscopy (TEM) offers the ability to study interfaces of films at high resolution. Scanning transmission electron microscopy (STEM) allows for real space imaging of materials with directly interpretable atomic number contrast. Electron energy loss spectroscopy (EELS), together with STEM, can probe the local chemical composition as well as local electronic states of transition metals and oxygen. Both techniques have been significantly improved by aberration correctors, which reduce the probe size to 1 Å, or less. Aberration correctors have thus made it possible to resolve individual atomic columns, and possibly probe the electronic structure at atomic scales. Separately, using electron probe forming lenses, structural information such as the crystal structure, strain, lattice mismatches, and superlattice ordering can be measured by nanoarea electron diffraction (NED). The combination of STEM, EELS, and NED techniques allows us to gain a fundamental understanding of the properties of oxide superlattices and ultrathin films and their relationship with the corresponding atomic and electronic structure. In this dissertation, I use the aforementioned electron microscopy techniques to investigate several oxide superlattice and ultrathin film systems. The major findings are summarized below. These results were obtained with stringent specimen preparation methods that I developed for high resolution studies, which are described in Chapter 2. The essential materials background and description of electron microscopy techniques are given in Chapter 1 and 2. In a LaMnO3-SrMnO3 superlattice, we demonstrate the interface of LaMnO3-SrMnO3 is sharper than the SrMnO3-LaMnO3 interface. Extra spectral weights in EELS are confined to the sharp interface, whereas at the rougher interface, the extra states are either not present or are not confined to the interface. Both the structural and electronic asymmetries correspond to asymmetric magnetic ordering at low temperature. In a short period LaMnO3-SrTiO3 superlattice for optical applications, we discovered a modified band structure in SrTiO3 ultrathin films relative to thick films and a SrTiO3 substrate, due to charge leakage from LaMnO3 in SrTiO3. This was measured by chemical shifts of the Ti L and O K edges using atomic scale EELS. The interfacial sharpness of LaAlO3 films grown on SrTiO3 was investigated by the STEM/EELS technique together with electron diffraction. This interface, when prepared under specific conditions, is conductive with high carrier mobility. Several suggestions for the conductive interface have been proposed, including a polar catastrophe model, where a large built-in electric field in LaAlO3 films results in electron charge transfer into the SrTiO3 substrate. Other suggested possibilities include oxygen vacancies at the interface and/or oxygen vacancies in the substrate. The abruptness of the interface as well as extent of intermixing has not been thoroughly investigated at high resolution, even though this can strongly influence the electrical transport properties. We found clear evidence for cation intermixing through the LaAlO3-SrTiO3 interface with high spatial resolution EELS and STEM, which contributes to the conduction at the interface. We also found structural defects, such as misfit dislocations, which leads to increased intermixing over coherent interfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse réalisée en cotutelle avec la direction de Jean-Jacques Courtine à l'Université de Paris III Sorbonne Nouvelle sous la discipline anthropologie et avec la direction de Dominique Deslandres à l'Université de Montréal sous la discipline histoire

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: At the end of 80s, cloning technologies with the increase of the antibodies’ sensibility made easier the development of technologies based on Fluorescence in situ Hibridation (FISH). Nowadays, It’s widely used in the field of basic investigation as much as clinic diagnostic. Method: FISH is a technique that combines molecular biology with histochemistry way to detect specific nucleotide sequences so that chromosome’s section or even whole chromosome can be marked on metaphases cells (cell in division) and on attached cellular nucleus. This detection is realized using DNA fluorescence probes (marked with fluorophores), that can be different according to the structures manage to detect: large single-locus probes, small unique-sequence probes, chromosome- or region-specific “paints” or repetitive sequence probes and genomic DNA probes. Some of the applications of this technique is that can be so useful in the detection of numerical and structural chromosomal alterations such as polyploidies or genomic rearrangement, to mapping metaphases cells and even to detect bacteria or another type of microorganism. In addition, FISH allows us to monitoring diseases (antitumor therapies, quantification of genomic altered cells…) and the precise location of chromosomic broken spots on tumor searching for new genes involved in cancer and detect and map interested known genes. Conclusion: FISH has many advantages ahead of conventional cytogenetic techniques (bands G karyotype) overall at the time of establish a clinic diagnostic to detect tumors and chromosomic aberration, presenting a higher sensibility and specificity as well as being a relative quick technique (24 hours).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Agricultural products and by products provide the primary materials for a variety of technological applications in diverse industrial sectors. Agro-industrial wastes, such as cotton and curaua fibers, are used to prepare nanofibers for use in thermoplastic films, where they are combined with polymeric matrices, and in biomedical applications such as tissue engineering, amongst other applications. The development of products containing nanofibers offers a promising alternative for the use of agricultural products, adding value to the chains of production. However, the emergence of new nanotechnological products demands that their risks to human health and the environment be evaluated. This has resulted in the creation of the new area of nanotoxicology, which addresses the toxicological aspects of these materials.Purpose and methods: Contributing to these developments, the present work involved a genotoxicological study of different nanofibers, employing chromosomal aberration and comet assays, as well as cytogenetic and molecular analyses, to obtain preliminary information concerning nanofiber safety. The methodology consisted of exposure of Allium cepa roots, and animal cell cultures (lymphocytes and fibroblasts), to different types of nanofibers. Negative controls, without nanofibers present in the medium, were used for comparison.Results: The nanofibers induced different responses according to the cell type used. In plant cells, the most genotoxic nanofibers were those derived from green, white, and brown cotton, and curaua, while genotoxicity in animal cells was observed using nanofibers from brown cotton and curaua. An important finding was that ruby cotton nanofibers did not cause any significant DNA breaks in the cell types employed.Conclusion: This work demonstrates the feasibility of determining the genotoxic potential of nanofibers derived from plant cellulose to obtain information vital both for the future usage of these materials in agribusiness and for an understanding of their environmental impacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous contribution [Appl. Opt. 51, 8599 (2012)], a coauthor of this work presented a method for reconstructing the wavefront aberration from tangential refractive power data measured using dynamic skiascopy. Here we propose a new regularized least squares method where the wavefront is reconstructed not only using tangential but also sagittal curvature data. We prove that our new method provides improved quality reconstruction for typical and also for highly aberrated wavefronts, under a wide range of experimental error levels. Our method may be applied to any type of wavefront sensor (not only dynamic skiascopy) able to measure either just tangential or tangential plus sagittal curvature data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In recent years new models of intraocular lenses are appearing on the market to reduce requirements for additional optical correction. The purpose of this study is to assess visual outcomes following bilateral cataract surgery and the implant of a FineVision® trifocal intraocular lens (IOL). Methods Prospective, nonrandomized, observational study. Vision was assessed in 44 eyes of 22 patients (mean age 68.4 ± 5.5 years) before and 3 months after surgery. Aberrations were determined using the Topcon KR-1 W wave-front analyzer. LogMAR visual acuity was measured at distance (corrected distance visual acuity, CDVA 4 m), intermediate (distance corrected intermediate visual acuity, DCIVA 60 cm) and near (distance corrected near visual acuity, DCNVA 40 cm). The Pelli-Robson letter chart and the CSV-1000 test were used to estimate contrast sensitivity (CS). Defocus curve testing was performed in photopic and mesopic conditions. Adverse photic phenomena were assessed using the Halo v1.0 program. Results Mean aberration values for a mesopic pupil diameter were: total HOA RMS: 0.41 ± 0.30 μm, coma: 0.32 ± 0.22 μm and spherical aberration: 0.21 ± 0.20 μm. Binocular logMAR measurements were: CDVA −0.05 ± 0.05, DCIVA 0.15 ± 0.10, and DCNVA 0.06 ± 0.10. Mean Pelli-Robson CS was 1.40 ± 0.14 log units. Mean CSV100 CS for the 4 frequencies examined (A: 3 cycles/degree (cpd), B: 6 cpd, C: 12 cpd, D: 18 cpd) were 1.64 ± 0.14, 1.77 ± 0.18, 1.44 ± 0.24 and 0.98 ± 0.24 log units, respectively. Significant differences were observed in defocus curves for photopic and mesopic conditions (p < 0.0001). A mean disturbance index of 0.28 ± 0.22 was obtained. Conclusions Bilateral FineVision IOL implant achieved a full range of adequate vision, satisfactory contrast sensitivity, and a lack of significant adverse photic phenomena. Trial registration Eudract Clinical Trials Registry Number: 2014-003266-2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human radiosensitivity is a quantitative trait that is generally subject to binomial distribution. Individual radiosensitivity, however, may deviate significantly from the mean (by 2-3 standard deviations). Thus, the same dose of radiation may result in different levels of genotoxic damage (commonly measured as chromosome aberration rates) in different individuals. There is significant genetic component in individual radiosensitivity. It is related to carriership of variant alleles of various single-nucleotide polymorphisms (most of these in genes coding for proteins functioning in DNA damage identification and repair); carriership of different number of alleles producing cumulative effects; amplification of gene copies coding for proteins responsible for radioresistance, mobile genetic elements, and others. Among the other factors influencing individual radioresistance are: radioadaptive response; bystander effect; levels of endogenous substances with radioprotective and antimutagenic properties and environmental factors such as lifestyle and diet, physical activity, psychoemotional state, hormonal state, certain drugs, infections and others. These factors may have radioprotective or sensibilising effects. Apparently, there are too many factors that may significantly modulate the biological effects of ionising radiation. Thus, conventional methodologies for biodosimetry (specifically, cytogenetic methods) may produce significant errors if personal traits that may affect radioresistance are not accounted for.