978 resultados para AMMONIUM-NITRATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of nitrification of several nitrogenous fertilizers (ammonium sulfate, nitre-chalk, ureia, and cottonseed meal) was studied in three soils, namely, "terra roxa legítima", a red soil derived from basalt, "terra roxa misturada", a soil also derived from basalt but with a higher proportion of sand, and "areito Corumbataí", a sandy soil. The effects of the following treatments on nitrification were considered: addition of limestone of micronutrients (Fe, Cu, Zn, Mn, and Mo), and inoculation with a suspension of spores of Aspergillus wentii, a heterotrophic nitrifier. The results showed that: in "terra roxa legítima" limestone had no influence on the nitrification rate, whereas the micronutrients estimulated the oxidation of nitre-chalk, cottonseed meal and urea; inoculation with A. wentii helped only the nitrification of ammonium sulfate and of the cottonseed meal; the latter, in all the treatments employed gave use to a smaller amount of nitrates; in "terra roxa misturada", all the fertilizers depending upon the treatments they were subjected to, presented maximum values for nitrification; limestone estimulated the oxidation of ammonium sulfate as well as the mineralization of the cottonseed meal; the addition of micronutrients helped the nitrification of all the fertilizers, except that of urea; inoculation showed a benefical influence on the nitrification of ammonium sulfate and cottonseed meal; in "arenito de Corumbatai", the amounts of nitrates produced was roughly the same for all the fertilizers investigated; limestone estimulated the nitrification of nitro-chalk, ammonium sulfate and cottonseed meal whilst the addition of micronutrients benefited only the latter two; the inoculation with A. wentii helped the oxidation of all the fertilizers. In order to study the availability of the various fertilizers above discussed, two plant growing experiments were carried cut, one in pots, using the three soil types and another one in the field, with "terra roxa misturada". In "arenito de Corumbatai" there was no significant difference in the yield both of straw and rice grains for none of the fertilizers: Chilean nitrate of soda was used as a control; ho marked agreement could be detected between the data concerning nitrification and the yield results. In "terra roxa legítima", ammonium sulfate won the competition and there was a good parallelism between nitrification and yield. In "terra roxa misturada", there was no statistical difference among the various fertilizers; the agreement between nitrification and yields was reasonable. In the field (corn), Chilean nitrate, ammonium sulfate and nitro-chalk were clearly beter than urea and cottonseed meal which did not differ from the minus nitrogen plots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organic and inorganic forms of soil nitrogen and how they participate in the process of fixation, immobilization and mineralization of ammonium in soils were evaluated, after different periods of incubaton, utilizing two soils, a Lithic Haplustoll and a Typic Eutrorthox. The results obtained permit to suggest that : 1) The method for determination of the ammonium fixing capacity based on the extraction with 2N KC1, is considered to be subject to interferences of other soil fractions capable of retaining ammonium. 2) The increase in exchangeable ammonium content is related to the decrease in amino acids and hydrolyzable ammonium. 3) The immobilization and mineralization processes are still held under mil microbial. The forms more affected by this condition are amino acids and hydrolyzable ammonium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluctuations in ammonium (NH4+), measured as NH4-N loads using an ion-selective electrode installed at the inlet of a sewage treatment plant, showed a distinctive pattern which was associated to weekly (i.e., commuters) and seasonal (i.e., holidays) fluctuations of the population. Moreover, population size estimates based on NH4-N loads were lower compared to census data. Diurnal profiles of benzoylecgonine (BE) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) were shown to be strongly correlated to NH4-N. Characteristic patterns, which reflect the prolonged nocturnal activity of people during the weekend, could be observed for BE, cocaine, and a major metabolite of MDMA (i.e., 4-hydroxy-3-methoxymethamphetamine). Additional 24 h composite samples were collected between February and September 2013. Per-capita loads (i.e., grams per day per 1000 inhabitants) were computed using census data and NH4-N measurements. Normalization with NH4-N did not modify the overall pattern, suggesting that the magnitude of fluctuations in the size of the population is negligible compared to those of illicit drug loads. Results show that fluctuations in the size of the population over longer periods of time or during major events can be monitored using NH4-N loads: either using raw NH4-N loads or population size estimates based on NH4-N loads, if information about site-specific NH4-N population equivalents is available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ammonium salt derivatives of natural allylphenols were synthesized with the purpose of obtaining potential peripheral analgesics. These drugs, by virtue of their physicochemical properties, would not be able to cross the blood brain barrier. Their inability to enter into the central nervous system (CNS) should prevent several adverse effects observed with classical opiate analgesics (Ferreira et al., 1984). Eugenol (1) O-methyleugenol (5) and safrole (9) were submitted to nitration, reduction and permethylation, leading to the ammonium salts 4, 8 and 12. Another strategy applied to eugenol (1), consisting in its conversion to a glycidic ether (13), opening the epoxide ring with secondary amines and methylation, led to the ammonium salts 16 and 17. All these ammonium salts showed significant peripheral analgesic action, in modified version of the Randall-Sellito test (Ferreira et al. 1978), at non-lethal doses. The ammonium salt 8 showed an activity comparable to that of methylnalorphinium, the prototype of an ideal peripheral analgesic (Ferreira et al., 1984).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Methylmalonic aciduria is an inborn error of metabolism characterized by accumulation of methylmalonate (MMA), propionate and 2-methylcitrate (2-MCA) in body fluids. Early diagnosis and current treatment strategies aimed at limiting the production of these metabolites are only partially effective in preventing neurological damage. METHODS: To explore the metabolic consequences of methylmalonic aciduria on the brain, we used 3D organotypic brain cell cultures from rat embryos. We challenged the cultures at two different developmental stages with 1 mM MMA, propionate or 2-MCA applied 6 times every 12 h. In a dose-response experiment cultures were challenged with 0.01, 0.1, 0.33 and 1 mM 2-MCA. Immunohistochemical staining for different brain cell markers were used to assess cell viability, morphology and differentiation. Significant changes were validated by western blot analysis. Biochemical markers were analyzed in culture media. Apoptosis was studied by immunofluorescence staining and western blots for activated caspase-3. RESULTS: Among the three metabolites tested, 2-MCA consistently produced the most pronounced effects. Exposure to 2-MCA caused morphological changes in neuronal and glial cells already at 0.01 mM. At the biochemical level the most striking result was a significant ammonium increase in culture media with a concomitant glutamine decrease. Dose-response studies showed significant and parallel changes of ammonium and glutamine starting from 0.1 mM 2-MCA. An increased apoptosis rate was observed by activation of caspase-3 after exposure to at least 0.1 mM 2-MCA. CONCLUSION: Surprisingly, 2-MCA, and not MMA, seems to be the most toxic metabolite in our in vitro model leading to delayed axonal growth, apoptosis of glial cells and to unexpected ammonium increase. Morphological changes were already observed at 2-MCA concentrations as low as 0.01 mM. Increased apoptosis and ammonium accumulation started at 0.1 mM thus suggesting that ammonium accumulation is secondary to cell suffering and/or cell death. Local accumulation of ammonium in CNS, that may remain undetected in plasma and urine, may therefore play a key role in the neuropathogenesis of methylmalonic aciduria both during acute decompensations and in chronic phases. If confirmed in vivo, this finding might shift the current paradigm and result in novel therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The susceptibility of 49 Mycobacterium tuberculosis clinical isolates to isoniazid (INH) and rifampisin (RIF) (28 multi-drug resistant-tuberculosis samples) was determined by a nitrate reductase assay (NRA) on blood agar. Agreement between the NRA and other testing methods was found to be 93.8% for both INH and RIF. The sensitivity, specificity, positive predictive value and negative predictive value for INH were 92.8%, 94.2%, 86.6% and 97%, respectively. The sensitivity, specificity, positive predictive value and negative predictive value for RIF were 90.4%, 96.4%, 95% and 93.1%. In conclusion, we show here that blood agar can be used effectively for the NRA test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of the nitrate reductase assay (NRA) was compared with the proportion method (PM) on Lowenstein-Jensen medium and the BACTEC MGIT960 assay under routine conditions using 160 clinical isolates of Mycobacterium tuberculosis with a high proportion of resistant strains. The mean time to obtain results was 8.8 days and the overall agreements between NRA and PM and NRA and M960 were 95% and 94%, respectively. NRA was easy to perform and represents a useful tool for the rapid screening of drug-resistant M. tuberculosis strains in low-resource countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microplate nitrate reductase assay (MNRA) and the rezasurin microtitre assay (REMA) were used for the susceptibility testing of 73 clinical isolates and the results were compared with those that were obtained using the Bactec 460 TB and Bactec MGIT 960 systems. The REMA and the MNRA were performed in 96-well plates. For the REMA, the concentrations of isoniazid (INH) and rifampicin (RIF) ranged from 1.0-0.01 µg/mL and 2.0-0.03 µg/mL, respectively. For the MNRA, the INH concentration was between 1.0-0.03 µg/mL and the RIF concentration was between 2.0-0.06 µg/mL. For the MNRA, the sensitivity, specificity, positive predictive value, negative predictive value and INH/RIF agreement were 100/95.6, 97.6/100, 96.8/100, 100/98 and 98.6/98.6, respectively, and for the REMA, they were 100/91.3, 90.4/100, 88.5/100, 100/96.1 and 94.5/97.2, respectively. Our data suggest that these two rapid, low-cost methods may be inexpensive, alternative assays for the rapid detection of multidrug resistant tuberculosis in low-income countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Catalonia, according to the nitrate directive (91/676/EU), nine areas have been declared as vulnerable to nitrate pollution from agricultural sources (Decret 283/1998 and Decret 479/2004). Five of these areas have been studied coupling hydro chemical data with a multi-isotopic approach (Vitòria et al. 2005, Otero et al. 2007, Puig et al. 2007), in an ongoing research project looking for an integrated application of classical hydrochemistry data, with a comprehensive isotopic characterisation (δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δD and δ18O of water). Within this general frame, the contribution presented explores compositional ways of: (i) distinguish agrochemicals and manure N pollution, (ii) quantify natural attenuation of nitrate (denitrification), and identify possible controlling factors.To achieve this two-fold goal, the following techniques have been used. Separate biplots of each suite of data show that each studied region has a distinct δ34S and pH signatures, but they are homogeneous with regard to NO3- related variables. Also, the geochemical variables were projected onto the compositional directions associated with the possible denitrification reactions in each region. The resulting balances can be plot together with some isotopes, to assess their likelihood of occurrence

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cotreatment protected axons from ammonium toxic effects, although this did not restore high-energy phosphates. The protection by creatine was glial cell-dependent. Our findings suggest that the means to efficiently sustain CNS creatine concentration in hyperammonemic neonates and infants should be assessed to prevent impairment of axonogenesis and irreversible brain damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperammonemic disorders in pediatric patients lead to poorly understood irreversible effects on the developing brain that may be life-threatening. We showed previously that some of these NH4+-induced irreversible effects might be due to impairment of axonal growth that can be protected under ammonium exposure by creatine co-treatment. The aim of the present work was thus to analyse how the genes of arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), allowing creatine synthesis, as well as of the creatine transporter SLC6A8, allowing creatine uptake into cells, are regulated in rat brain cells under NH4+ exposure. Reaggregated brain cell three-dimensional cultures exposed to NH4Cl were used as an experimental model of hyperammonemia in the developing central nervous system (CNS). We show here that NH4+ exposure differentially alters AGAT, GAMT and SLC6A8 regulation, in terms of both gene expression and protein activity, in a cell type-specific manner. In particular, we demonstrate that NH4+ exposure decreases both creatine and its synthesis intermediate, guanidinoacetate, in brain cells, probably through the inhibition of AGAT enzymatic activity. Our work also suggests that oligodendrocytes are major actors in the brain in terms of creatine synthesis, trafficking and uptake, which might be affected by hyperammonemia. Finally, we show that NH4+ exposure induces SLC6A8 in astrocytes. This suggests that hyperammonemia increases blood-brain barrier permeability for creatine. This is normally limited due to the absence of SLC6A8 from the astrocyte feet lining microcapillary endothelial cells, and thus creatine supplementation may protect the developing CNS of hyperammonemic patients.

Relevância:

20.00% 20.00%

Publicador: