920 resultados para ALUMINA POWDER
Resumo:
Polypyromellitimide molding powder has been prepared. In the 78-370 K range, the dependence of the specific heat capacity (c(p)) on the temperature (T) is given by the polynomial: c(p)=0.8163+0.4592X+0.02468X(2)+0.1192X(3)+0.05659X(4) (J K-1 g(-1)) where X=(T-225.5)/144.5. Thermal decomposition in air starts at 716 K, and is complete at 1034 K. The standard combustion enthalpy is Delta(c)H=-26.442 kJ g(-1). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Two series of sulfided Ni or Co promoted Mo/alumina catalysts, having different Ni or Co loadings, were characterized by their activities for the transformation of cyclopentanone into cyclopentanethiol (flow reactor, 220 degrees C, atmospheric pressure) and for the hydrodesulfurization of dibenzothiophene (flow reactor, 340 degrees C, 3 MPa hydrogen pressure). The addition of the promoter increased significantly the activity of the Mo/alumina catalyst for both reactions, up to a maximum obtained with the catalysts having a (promoter)/(promoter+Mo) molar ratio equal to 0.3-0.4. This increase in activity was due in part to an increase in the hydrogenating properties of the Mo/alumina catalyst. However, an additional modification of the catalyst (basic and nucleophilic properties) must be considered to account for the spectacular effect of the promoter on the rate of the dibenzothiophene direct desulfurization reaction. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In this study, a novel sol-gel method is used to synthesize amorphous silica-alumina materials with a narrow mesoporous distribution and various Si/Al molar ratios without using any templates and pore-regulating agents. During the preparation procedure, only inexpensive inorganic salts were used as raw materials, instead of expensive and harmful alkoxides. The precursor sol was dried at room temperature in a vacuum box kept at 60 mmHg until it began to form the gel. The results of a nitrogen sorption experiment indicate that the synthesized materials with different Si/Al molar ratios have similar mesoporous distributions (within 2-12 nm). Moreover, it was found that the material's pore size distribution remains at a similar value during the heat treatment from room temperature to 550 degreesC. On the basis of the nitrogen sorption, TEM, and AFM characterization results, a formation mechanism of mesopores which accounts for the experimental data is also suggested. This suggested mechanism involves rearrangement of the primary particles during the drying process to form the precursors of the similarly sized mesopores. The synthesized materials were characterized by XRD, thermal analysis (TG/DTA), Al-27 and Si-29 MAS NMR spectroscopy, SEM, TEM, and AFM. The results of Al-27 and 29Si MAS NMR indicate that the distribution of silicon and aluminum in the synthesized materials is more uniform and homogeneous than that in the mixed oxides prepared via the traditional sol-gel method even at high alumina contents. The type and density of the acid sites were studied using pyridine adsorption-desorption FTIR spectroscopy. It was shown that the acidity of the synthesized materials is higher than that of the silica-alumina materials prepared by conventional methods.
Resumo:
A novel sol-gel process has been developed for the synthesis of amorphous silica-aluminas with controlled mesopore distribution without the use of organic templating agents, e.g., surfactant molecules. Ultrasonic treatment during the synthesis enables production of precursor sols with narrow particle size distribution. Atomic force microscopy analysis shows that these sol particles are spherical in shape with a narrow size distribution (i.e., 13-25 nm) and their aggregation during the gelation creates clusters containing similar sized interparticle mesopores. A nitrogen physiadsorption study indicates that the mesoporous materials containing different Si/Al ratios prepared by the new synthesis method has a large specific surface area (i.e., 587-692 m(2)/g) and similar pore sizes of 2-11 nm. Solid-state Al-27 magic angle spinning (MAS) NMR shows that most of the aluminum is located in the tetrahedral position. A transmission electron microscopy (TEM) image shows that the mesoporous silica-alumina consists of 12-25 nm spheres. Additionally, high-resolution TEM and electron diffraction indicate that some nanoparticles are characteristic of a crystal, although X-ray diffraction and Si-29 MAS NMR analysis show an amorphous material.
Resumo:
Highly reactive magnesium powder of nanometric size, which was generated by the thermal decomposition of magnesium anthracene . 3THF under vacuum, can react with N-2 under atmospheric pressure, even at 300 degrees C, to form magnesium nitride. The rate and extent of the reaction can be improved effectively by doping the magnesium powder with a small amount of nickel or titanium compounds.
Resumo:
Magnesium nitride (Mg3N2) was synthesized by the reaction of magnesium in the highly reactive form (Mg*) with nitrogen at 450 degrees C under normal pressure. The effect of doping with nickel dichloride on the nitridation of Mg* was investigated. Differential thermal analysis (DTA) of Mg* systems and transmission electron microscopy (TEM) measurement of the product formed were carried out. TEM measurement showed that the particle size of the Mg3N2 synthesized was in the nanometric range. The dependence of nitridation of the NiCl2-doped Mg* on temperature was investigated at temperatures ranging from 300 to 500 degrees C. The nitridation of NiCl2-doped Mg* could occur even at temperature as low as 300 degrees C. (C) 1999 Kluwer Academic Publishers.