957 resultados para A(1)- AND A(2)-ADRENOCEPTORS
Resumo:
Abstract Background Metastasis is the main factor responsible for death in breast cancer patients. Matrix metalloproteinases (MMPs) and their inhibitors, known as tissue inhibitors of MMPs (TIMPs), and the membrane-associated MMP inhibitor (RECK), are essential for the metastatic process. We have previously shown a positive correlation between MMPs and their inhibitors expression during breast cancer progression; however, the molecular mechanisms underlying this coordinate regulation remain unknown. In this report, we investigated whether TGF-β1 could be a common regulator for MMPs, TIMPs and RECK in human breast cancer cell models. Methods The mRNA expression levels of TGF-β isoforms and their receptors were analyzed by qRT-PCR in a panel of five human breast cancer cell lines displaying different degrees of invasiveness and metastatic potential. The highly invasive MDA-MB-231 cell line was treated with different concentrations of recombinant TGF-β1 and also with pharmacological inhibitors of p38 MAPK and ERK1/2. The migratory and invasive potential of these treated cells were examined in vitro by transwell assays. Results In general, TGF-β2, TβRI and TβRII are over-expressed in more aggressive cells, except for TβRI, which was also highly expressed in ZR-75-1 cells. In addition, TGF-β1-treated MDA-MB-231 cells presented significantly increased mRNA expression of MMP-2, MMP-9, MMP-14, TIMP-2 and RECK. TGF-β1 also increased TIMP-2, MMP-2 and MMP-9 protein levels but downregulated RECK expression. Furthermore, we analyzed the involvement of p38 MAPK and ERK1/2, representing two well established Smad-independent pathways, in the proposed mechanism. Inhibition of p38MAPK blocked TGF-β1-increased mRNA expression of all MMPs and MMP inhibitors analyzed, and prevented TGF-β1 upregulation of TIMP-2 and MMP-2 proteins. Moreover, ERK1/2 inhibition increased RECK and prevented the TGF-β1 induction of pro-MMP-9 and TIMP-2 proteins. TGF-β1-enhanced migration and invasion capacities were blocked by p38MAPK, ERK1/2 and MMP inhibitors. Conclusion Altogether, our results support that TGF-β1 modulates the mRNA and protein levels of MMPs (MMP-2 and MMP-9) as much as their inhibitors (TIMP-2 and RECK). Therefore, this cytokine plays a crucial role in breast cancer progression by modulating key elements of ECM homeostasis control. Thus, although the complexity of this signaling network, TGF-β1 still remains a promising target for breast cancer treatment.
Resumo:
Background Calstabins 1 and 2 bind to Ryanodine receptors regulating muscle excitation-contraction coupling. Mutations in Ryanodine receptors affecting their interaction with calstabins lead to different cardiac pathologies. Animal studies suggest the involvement of calstabins with dilated cardiomyopathy. Results We tested the hypothesis that calstabins mutations may cause dilated cardiomyopathy in humans screening 186 patients with idiopathic dilated cardiomyopathy for genetic alterations in calstabins 1 and 2 genes (FKBP12 and FKBP12.6). No missense variant was found. Five no-coding variations were found but not related to the disease. Conclusions These data corroborate other studies suggesting that mutations in FKBP12 and FKBP12.6 genes are not commonly related to cardiac diseases.
Resumo:
OBJECTIVE: Peripheral treatment with the cholinergic agonist pilocarpine increases salivary gland blood flow and induces intense salivation that is reduced by the central injection of moxonidine (α(2)-adrenoceptors/imidazoline agonist). In the present study, we investigated the effects of the intracerebroventricular (i.c.v.) injection of pilocarpine alone or combined with moxonidine also injected i.c.v. On submandibular/sublingual gland (SSG) vascular resistance. In addition, the effects of these treatments on arterial pressure, heart rate and on mesenteric and hindlimb vascular resistance were also tested. DESIGN: Male Holtzman rats with stainless steel cannula implanted into lateral ventricle and anaesthetized with urethane+α-chloralose were used. RESULTS: Pilocarpine (500nmol/1μl) injected i.c.v. Reduced SSG vascular resistance and increased arterial pressure, heart rate and mesenteric vascular resistance. Contrary to pilocarpine alone, the combination of moxonidine (20nmol/1μl) and pilocarpine injected i.c.v. Increased SSG vascular resistance, an effect abolished by the pre-treatment with the α(2)-adrenoceptor antagonist yohimbine (320nmol/2μl). The increase in arterial pressure, heart rate and mesenteric resistance was not modified by the combination of moxonidine and pilocarpine i.c.v. CONCLUSION: These results suggest that the activation of central α(2)-adrenoceptors may oppose to the effects of central cholinergic receptor activation in the SSG vascular resistance.
Resumo:
The acute direct action of angiotensin-(1-7) [ANG-(1-7)] on bicarbonate reabsorption (JHCO(3)(-)) was evaluated by stationary microperfusions on in vivo middle proximal tubules in rats using H ion-sensitive microelectrodes. The control JHCO(3)(-) is 2.82 ± 0.078 nmol·cm(-2)·s(-1) (50). ANG-(1-7) (10(-12) or 10(-9) M) in luminally perfused tubules decreases JHCO(3)(-) (36 or 60%, respectively), but ANG-(1-7) (10(-6) M) increases it (80%). A779 increases JHCO(3)(-) (30%) and prevents both the inhibitory and the stimulatory effects of ANG-(1-7) on it. S3226 decreases JHCO(3)(-) (45%) and changes the stimulatory effect of ANG-(1-7) to an inhibitory effect (30%) but does not affect the inhibitory effect of ANG-(1-7). Our results indicate that in the basal condition endogenous ANG-(1-7) inhibits JHCO(3)(-) and that the biphasic dose-dependent effect of ANG-(1-7) on JHCO(3)(-) is mediated by the Mas receptors via the Na(+)/H(+) exchanger 3 (NHE3). The control value of intracellular Ca(2+) concentration ([Ca(2+)](i)), as monitored using fura-2 AM, is 101 ± 2 nM (6), and ANG-(1-7) (10(-12), 10(-9), or 10(-6)M) transiently (3 min) increases it (by 151, 102, or 52%, respectively). A779 increases the [Ca(2+)](i) (25%) but impairs the stimulatory effect of all doses of ANG-(1-7) on it. The use of BAPTA or thapsigargin suggests a correlation between the ANG-(1-7) dose-dependent effects on [Ca(2+)](i) and JHCO(3)(-). Therefore, the interaction of the opposing dose-dependent effects of ANG II and ANG-(1-7) on [Ca(2+)](i) and JHCO(3)(-) may represent an physiological regulatory mechanism of extracellular volume and/or pH changes. However, whether [Ca(2+)](i) modification is an important direct mechanism for NHE3 activation by these peptides or is a side effect of other signaling pathways will require additional studies.
Resumo:
The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q^2 below 1 (GeV/c)^2 are not precise enough for a hard test of theoretical predictions.rnrnFor a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e,e′)p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q^2 region from 0.004 to 1 (GeV/c)^2 with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties.rnTo account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event.rnTo separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique.rnrnThe dip structure in G_E that was seen in the analysis of the previous world data shows up in a modified form. When compared to the standard-dipole form factor as a smooth curve, the extracted G_E exhibits a strong change of the slope around 0.1 (GeV/c)^2, and in the magnetic form factor a dip around 0.2 (GeV/c)^2 is found. This may be taken as indications for a pion cloud. For higher Q^2, the fits yield larger values for G_M than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q2 region up to 0.6 (GeV/c)^2.rnrnThe charge and magnetic rms radii are determined as rn⟨r_e⟩=0.879 ± 0.005(stat.) ± 0.004(syst.) ± 0.002(model) ± 0.004(group) fm,rn⟨r_m⟩=0.777 ± 0.013(stat.) ± 0.009(syst.) ± 0.005(model) ± 0.002(group) fm.rnThis charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value.
Resumo:
Although it is well established that stromal intercellular adhesion molecule-1 (ICAM-1), ICAM-2, and vascular cell adhesion molecule-1 (VCAM-1) mediate lymphocyte recruitment into peripheral lymph nodes (PLNs), their precise contributions to the individual steps of the lymphocyte homing cascade are not known. Here, we provide in vivo evidence for a selective function for ICAM-1 > ICAM-2 > VCAM-1 in lymphocyte arrest within noninflamed PLN microvessels. Blocking all 3 CAMs completely inhibited lymphocyte adhesion within PLN high endothelial venules (HEVs). Post-arrest extravasation of T cells was a 3-step process, with optional ICAM-1-dependent intraluminal crawling followed by rapid ICAM-1- or ICAM-2-independent diapedesis and perivascular trapping. Parenchymal motility of lymphocytes was modestly reduced in the absence of ICAM-1, while ICAM-2 and alpha4-integrin ligands were not required for B-cell motility within follicles. Our findings highlight nonredundant functions for stromal Ig family CAMs in shear-resistant lymphocyte adhesion in steady-state HEVs, a unique role for ICAM-1 in intraluminal lymphocyte crawling but redundant roles for ICAM-1 and ICAM-2 in lymphocyte diapedesis and interstitial motility.
Resumo:
Cannabinoid receptors CB1 and CB2 are expressed in the liver, but their regulation in fatty hepatocytes is poorly documented. The aim of this study was to investigate the effects of selective CB1 or CB2 agonists on the expression of key regulators of lipid metabolism.
Resumo:
Endothelial ICAM-1 and ICAM-2 were shown to be essential for T cell diapedesis across the blood-brain barrier (BBB) in vitro under static conditions. Crawling of T cells prior to diapedesis was only recently revealed to occur preferentially against the direction of blood flow on the endothelial surface of inflamed brain microvessels in vivo. Using live cell-imaging techniques, we prove that Th1 memory/effector T cells predominantly crawl against the direction of flow on the surface of BBB endothelium in vitro. Analysis of T cell interaction with wild-type, ICAM-1-deficient, ICAM-2-deficient, or ICAM-1 and ICAM-2 double-deficient primary mouse brain microvascular endothelial cells under physiological flow conditions allowed us to dissect the individual contributions of endothelial ICAM-1, ICAM-2, and VCAM-1 to shear-resistant T cell arrest, polarization, and crawling. Although T cell arrest was mediated by endothelial ICAM-1 and VCAM-1, T cell polarization and crawling were mediated by endothelial ICAM-1 and ICAM-2 but not by endothelial VCAM-1. Therefore, our data delineate a sequential involvement of endothelial ICAM-1 and VCAM-1 in mediating shear-resistant T cell arrest, followed by endothelial ICAM-1 and ICAM-2 in mediating T cell crawling to sites permissive for diapedesis across BBB endothelium.
Resumo:
The excitonic splitting between the S-1 and S-2 electronic states of the doubly hydrogen-bonded dimer 2-pyridone center dot 6-methyl-2-pyridone (2PY center dot 6M2PY) is studied in a supersonic jet, applying two-color resonant two-photon ionization (2C-R2PI), UV-UV depletion, and dispersed fluorescence spectroscopies. In contrast to the C-2h symmetric (2-pyridone) 2 homodimer, in which the S-1 <- S-0 transition is symmetry-forbidden but the S-2 <- S-0 transition is allowed, the symmetry-breaking by the additional methyl group in 2PY center dot 6M2PY leads to the appearance of both the S-1 and S-2 origins, which are separated by Delta(exp) = 154 cm(-1). When combined with the separation of the S-1 <- S-0 excitations of 6M2PY and 2PY, which is delta = 102 cm(-1), one obtains an S-1/S-2 exciton coupling matrix element of V-AB, el = 57 cm(-1) in a Frenkel-Davydov exciton model. The vibronic couplings in the S-1/S-2 <- S-0 spectrum of 2PY center dot 6M2PY are treated by the Fulton-Gouterman single-mode model. We consider independent couplings to the intramolecular 6a' vibration and to the intermolecular sigma' stretch, and obtain a semi-quantitative fit to the observed spectrum. The dimensionless excitonic couplings are C(6a') = 0.15 and C(sigma') = 0.05, which places this dimer in the weak-coupling limit. However, the S-1/S-2 state exciton splittings Delta(calc) calculated by the configuration interaction singles method (CIS), time-dependent Hartree-Fock (TD-HF), and approximate second-order coupled-cluster method (CC2) are between 1100 and 1450 cm(-1), or seven to nine times larger than observed. These huge errors result from the neglect of the coupling to the optically active intra-and intermolecular vibrations of the dimer, which lead to vibronic quenching of the purely electronic excitonic splitting. For 2PY center dot 6M2PY the electronic splitting is quenched by a factor of similar to 30 (i.e., the vibronic quenching factor is Gamma(exp) = 0.035), which brings the calculated splittings into close agreement with the experimentally observed value. The 2C-R2PI and fluorescence spectra of the tautomeric species 2-hydroxypyridine center dot 6-methyl-2-pyridone (2HP center dot 6M2PY) are also observed and assigned. (C) 2011 American Institute of Physics.
Resumo:
Purpose Orthognathic surgery has the objective of altering facial balance to achieve esthetic results in patients who have severe disharmony of the jaws. The purpose was to quantify the soft tissue changes after orthognathic surgery, as well as to assess the differences in 3D soft tissue changes in the middle and lower third of the face between the 1- and 2-jaw surgery groups, in mandibular prognathism patients. Materials and Methods We assessed soft tissue changes of patients who have been diagnosed with mandibular prognathism and received either isolated mandibular surgery or bimaxillary surgery. The quantitative surface displacement was assessed by superimposing preoperative and postoperative volumetric images. An observer measured a surface-distance value that is shown as a contour line. Differences between the groups were determined by the Mann-Whitney U test. The Spearman correlation coefficient was used to evaluate a potential correlation between patients' surgical and cephalometric variables and soft tissue changes after orthognathic surgery in each group. Results There were significant differences in the middle third of the face between the 1- and 2-jaw surgery groups. Soft tissues in the lower third of the face changed in both surgery groups, but not significantly. The correlation patterns were more evident in the lower third of the face. Conclusion The overall soft tissue changes of the midfacial area were more evident in the 2-jaw surgery group. In 2-jaw surgery, significant changes would be expected in the midfacial area, but caution should be exercised in patients who have a wide alar base.
Resumo:
BACKGROUND: Porcine IGF2 and the H19 genes are imprinted. The IGF2 is paternally expressed, while the H19 gene is maternally expressed. Extensive studies in mice established a boundary model indicating that the H19 differentially methylated domain (DMD) controls, upon binding with the CTCF protein, reciprocal imprinting of the IGF2 and the H19 genes. IGF2 transcription is tissue and development specific involving the use of 4 promoters. In the liver of adult Large White boars IGF2 is expressed from both parental alleles, whereas in skeletal muscle and kidney tissues we observed variable relaxation of IGF2 imprinting. We hypothesized that IGF2 expression from both paternal alleles and relaxation of IGF2 imprinting is reflected in differences in DNA methylation patterns at the H19 DMD and IGF2 differentially methylated regions 1 and 2 (DMR1 and DMR2). RESULTS: Bisulfite sequencing analysis did not show any differences in DNA methylation at the three porcine CTCF binding sites in the H19 DMD between liver, muscle and kidney tissues of adult pigs. A DNA methylation analysis using methyl-sensitive restriction endonuclease SacII and 'hot-stop' PCR gave consistent results with those from the bisulfite sequencing analysis. We found that porcine H19 DMD is distinctly differentially methylated, at least for the region formally confirmed by two SNPs, in liver, skeletal muscle and kidney of foetal, newborn and adult pigs, independent of the combined imprinting status of all IGF2 expressed transcripts. DNA methylation at CpG sites in DMR1 of foetal liver was significantly lower than in the adult liver due to the presence of hypomethylated molecules. An allele specific analysis was performed for IGF2 DMR2 using a SNP in the IGF2 3'-UTR. The maternal IGF2 DMR2 of foetal and newborn liver revealed a higher DNA methylation content compared to the respective paternal allele. CONCLUSIONS: Our results indicate that the IGF2 imprinting status is transcript-specific. Biallelic IGF2 expression in adult porcine liver and relaxation of IGF2 imprinting in porcine muscle were a common feature. These results were consistent with the IGF2 promoter P1 usage in adult liver and IGF2 promoter P2, P3 and P4 usages in muscle. The results showed further that bialellic IGF2 expression in liver and relaxation of imprinting in muscle and kidney were not associated with DNA methylation variation at and around at least one CTCF binding site in H19 DMD. The imprinting status in adult liver, muscle and kidney tissues were also not reflected in the methylation patterns of IGF2 DMRs 1 and 2.
Resumo:
BACKGROUND: Chronic extrinsic denervation induced by small bowel transplantation (SBT) results in adrenergic hypersensitivity in rat ileum. This study evaluated the role of neuronal and/or muscular beta1-, beta2-, and beta3-adrenoceptor (AR) mechanisms on contractility. METHODS: Ileal longitudinal muscle strips from Lewis rats (n = 6 rats per group, 8 strips per rat): naive controls (NC), 4 months after sham operation (SC) or after syngeneic orthotopic SBT were studied in vitro. Spontaneous contractile activity and dose responses (10(-8)-10(-4) mol) to isoprenaline (IP), a nonspecific beta-AR agonist were studied with or without selective antagonists (10(-5) mol), for beta1- (atenolol), beta2- (ICI 118551), or beta3- (SR 59230A) AR subtypes in the presence or absence of tetrodotoxin (TTX; 10(-6) mol; nerve blocker). RESULTS: pEC50 (neg log of EC50, which is the concentration where 50% of inhibition was observed) of IP was 7.2 +/- 0.2 (mean value +/- SEM) in SBT vs 6.3 +/- 0.1 in SC and 6.3 +/- 0.2 in NC (both P < .05 vs SBT), reflecting adrenergic hypersensitivity. Beta1- and beta2-AR blockade induced a TTX-sensitive right shift of the curve only in SBT and normalized pEC50 values from 7.2 +/- 0.2 to 6.4 +/- 0.1 and 7.2 +/- 0.2 to 6.6 +/- 0.1, respectively (P < .05). Beta3-AR blockade shifted the curve independent of the presence of TTX to the right in all groups (all P < .05). CONCLUSIONS: In rat ileum, adrenergic inhibition of contractility was dependent on muscular beta3-AR pathways, whereas posttransplant hypersensitivity was due to upregulated neuronal beta1- and beta2-AR mechanisms that were inactive before SBT.