924 resultados para 820[71]-1
Resumo:
Fluctuations in the length of 72 glaciers in the Northern and Southern Patagonia Icefield (NPI and SPI, respectively) and the Cordillera Darwin Icefield (CDI) were estimated between 1945 and 2005. The information obtained from historical maps based on 1945 aerial photographs was compared to ASTER and Landsat satellite images and to information found in the literature. The majority of glaciers have retreated considerably, with maximum values of 12.2 km for Marinelli Glacier in the CDI, 11.6 km for O'Higgins Glacier in the SPI and 5.7 km for San Rafael Glacier in the NPI. Among the 20 glaciers that have retreated the most relative to their size, small (less than 50 km**2) and medium (between 50 and 200 km**2) glaciers are the most affected. However, no direct relation between glacier retreat and size was found for the 72 glaciers studied. The highest percentage retreat in the CDI was by the CDI-03 Glacier (37.9%) and Marinelli Glacier (37.6%). In the SPI, relative retreats were heterogeneous and fluctuated between 27.2% (Amelia Glacier) and 0.4% (Viedma Glacier). In the NPI, relative retreat was very high for Strindberg and Cachet glaciers (35.9% and 27.6%, respectively) but for the remaining glaciers in this icefield it ranged between 11.8% (Piscis Glacier) and 3.6% (San Quintin Glacier). In addition to surface area, the surface slope (calculated on the basis of the DEM SRTM) was also related to the relative retreat and no straightforward relation was found. From a global point of view, we suggest that glacier retreat in the region is controlled firstly by atmospheric warming, as it has been reported in this area. Besides the general increase in temperature observed, no signal of a geographical pattern for the fluctuations in glacier length was found. Consequently, glaciers appear to initially react to local conditions most probably induced by their exposition, geometry and hypsometry. The heterogeneity of rates of retreat suggests that differences in basin geometry, glacier dynamics and response time are key features to explain fluctuations of each glacier.
Resumo:
A new topographic database for King George Island, one of the most visited areas in Antarctica, is presented. Data from differential GPS surveys, gained during the summers 1997/98 and 1999/2000, were combined with up to date coastlines from a SPOT satellite image mosaic, and topographic information from maps as well as from the Antarctic Digital Database. A digital terrain model (DTM) was generated using ARC/INFO GIS. From contour lines derived from the DTM and the satellite image mosaic a satellite image map was assembled. Extensive information on data accuracy, the database as well as on the criteria applied to select place names is given in the multilingual map. A lack of accurate topographic information in the eastern part of the island was identified. It was concluded that additional topographic surveying or radar interferometry should be conducted to improve the data quality in this area. In three case studies, the potential applications of the improved topographic database are demonstrated. The first two examples comprise the verification of glacier velocities and the study of glacier retreat from the various input data-sets as well as the use of the DTM for climatological modelling. The last case study focuses on the use of the new digital database as a basic GIS (Geographic Information System) layer for environmental monitoring and management on King George Island.
Resumo:
D18O values of nine tropical-subtropical planktonic foraminiferal species with different preferential habitat depths collected from 62 core-top samples along an east-west transect across the tropical Atlantic/Caribbean were used to test the applicability of interspecific d18O gradients for reconstructions of tropical upper ocean stratification. In general, the d18O difference (Delta d18O) between intermediate- and shallow-dwelling species decreases, and Delta d18O between deep and intermediate dwellers increases with increasing thermocline depth towards the west. The statistical significance of regional differences in Delta d18O highlights Delta d18O between the intermediate dwellers (in particular Globorotalia scitula and Globorotalia tumida) and the shallow dweller Globigerinoides ruber pink, as well as Delta d18O between the deep dwellers Globorotalia crassaformis or Globorotalia truncatulinoides dextral and intermediate dwellers as most sensitive to changes in tropical Atlantic thermocline depth. Based on the observed regional variations in interspecific Delta d18O, we propose a multispecies stratification index "STRAtrop" = (d18Ointermediate - d18Oshallow) / (d18Odeep - d18Oshallow) for the tropical ocean. Statistically significant differences in STRAtrop values between the E-Atlantic and the Caribbean suggest that this index may be a useful tool to monitor variations in tropical upper ocean stratification in the geological record.