956 resultados para 760-58


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stable-isotope composition of carbonate minerals is a function of the temperature and isotopic composition of the materials from which they were precipitated or recrystallized. Because carbonates are among the most abundant secondary phases in oceanic volcanic rocks, information derived from their isotopic composition is useful in determining the environment(s) of seafloor alteration. Isotopic analyses of secondary carbonates in basalt recovered from numerous DSDP sites have been reported previously (Anderson and Lawrence, 1976; Brenneke, 1977; Lawrence et al., 1977; Seyfried et al., 1976; among others). These results are consistent with the formation of most secondary carbonates with sea water at low temperatures. The good recovery of basalts during DSDP Leg 58 provided the opportunity to extend the isotopic study of low-temperature alteration and vein formation to the crust of marginal ocean basins. The evidence for complex off-ridge volcanism and intrusive emplacement encountered at Leg 58 sites (Klein et al., 1978) suggested that modes of alteration at these sites might differ from those previously observed and described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, modernized shipborne procedures are presented to collect and process above-water radiometry for remote sensing applications. A setup of five radiometers and a bidirectional camera system, which provides panoramic sea surface and sky images, is proposed for the collection of high-resolution radiometric quantities. Images from the camera system can be used to determine sky state and potential glint, whitecaps, or foam contamination. A peak in the observed remote sensing reflectance RRS spectra between 750-780 nm was typically found in spectra with relatively high surface reflected glint (SRG), which suggests this waveband could be a useful SRG indicator. Simplified steps for computing uncertainties in SRG corrected RRS are proposed and discussed. The potential of utilizing "unweighted multimodel averaging," which is the average of four or more common SRG correction models, is examined to determine the best approximation RRS. This best approximation RRS provides an estimate of RRS based on various SRG correction models established using radiative transfer simulations and field investigations. Applying the average RRS provides a measure of the inherent uncertainties or biases that result from a user subjectively choosing any one SRG correction model. Comparisons between inherent and apparent optical property derived observations were used to assess the robustness of the SRG multimodel averaging ap- proach. Correlations among the standard SRG models were completed to determine the degree of association or similarities between the SRG models. Results suggest that the choice of glint models strongly affects derived RRS values and can also influence the blue to green band ratios used for modeling biogeochemical parameters such as for chlorophyll a. The objective here is to present a uniform and traceable methodology for determining ship- borne RRS measurements and its associated errors due to glint correction and to ensure the direct comparability of these measurements in future investigations. We encourage the ocean color community to publish radiometric field measurements with matching and complete metadata in open access repositories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conglomerates and sandstones in lithologic unit V at DSDP Site 445 comprise lithic clasts, detrital minerals, bioclasts, and authigenic minerals. The lithic clasts are dominantly plagioclase-phyric basalt and microdolerite, followed by plagioclase-clinopyroxene-phyric basalt, aphyric basalt, chert, and limestone. A small amount of hornblende schist occurs. Detrital minerals are dominantly plagioclase, augite, titaniferous augite, olivine, green to pale-brown hornblende, and dark-brown hornblende, with subordinate chromian spinel, epidote, ilmenite, and magnetite, and minor amounts of diopside, enstatite, actinolite, and aegirine-augite. Bioclasts are Nummulites boninensis, Asterocyclina sp. cf. A. penuria, and some other larger foraminifers. Correlation of cored and dredged samples indicates that the Daito Ridge is mainly composed of igneous, metamorphic, ultramafic, and sedimentary rocks. The igneous rocks are mafic (probably tholeiitic) and alkalic. The metamorphic rocks are hornblende schist, tremolite schist, and diopside-chlorite schist. The ultramafic rocks are alpinetype peridotites. Mineralogical data suggest that there were two metamorphic events in the Daito Ridge. The older one was intermediate- to high-pressure metamorphism. The younger one was contact metamorphism caused by a Paleocene volcanic event, possibly related to the beginning of spreading of the west Philippine Basin. The ultramafic rocks suffered from the same contact metamorphism. During the Eocene, exposed volcanic and metamorphic rocks on the uplifted Daito Ridge may have supplied pebble clasts to the surrounding coast and shallow sea bottom. The steep slope offshore may have caused frequent slumping and transportation of the pebble clasts and shallow-water benthic organisms into deeper water, forming the conglomerates and sandstones treated here.