887 resultados para 3.5G EUL Techniques
Resumo:
To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).
Resumo:
PURPOSE: Implanted venous access devices (IVADs) are often used in patients who require long-term intravenous drug administration. The most common causes of device dysfunction include occlusion by fibrin sheath and/or catheter adherence to the vessel wall. We present percutaneous endovascular salvage techniques to restore function in occluded catheters. The aim of this study was to evaluate the feasibility, safety, and efficacy of these techniques. METHODS AND MATERIALS: Through a femoral or brachial venous access, a snare is used to remove fibrin sheath around the IVAD catheter tip. If device dysfunction is caused by catheter adherences to the vessel wall, a new "mechanical adhesiolysis" maneuver was performed. IVAD salvage procedures performed between 2005 and 2013 were analyzed. Data included clinical background, catheter tip position, success rate, recurrence, and rate of complication. RESULTS: Eighty-eight salvage procedures were performed in 80 patients, mostly women (52.5 %), with a mean age of 54 years. Only a minority (17.5 %) of evaluated catheters were located at an optimal position (i.e., cavoatrial junction ±1 cm). Mechanical adhesiolysis or other additional maneuvers were used in 21 cases (24 %). Overall technical success rate was 93.2 %. Malposition and/or vessel wall adherences were the main cause of technical failure. No complications were noted. CONCLUSION: These IVAD salvage techniques are safe and efficient. When a catheter is adherent to the vessel wall, mechanical adhesiolysis maneuvers allow catheter mobilization and a greater success rate with no additional risk. In patients who still require long-term use of their IVAD, these procedures can be performed safely to avoid catheter replacement.